refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 324 results
Sort by

Filters

Technology

Platform

accession-icon SRP098606
Sin3a regulates epithelial progenitor cell fate during lung development
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Comparison of global transcription profiles in mouse E12.5 embryonic lung from Shh-Cre;Sin3a flox/+ control with Shh-Cre;Sin3a flox/flox revealed a large change genes due to loss of Sin3a in early lung development. Overall design: Examination of 2 different transcriptomes in 2 genotypes with three replicates.

Publication Title

Sin3a regulates epithelial progenitor cell fate during lung development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP131871
TAD cliques shape the 4-dimensional genome during dual lineage terminal differentiation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

How genomic information is selectively utilized to direct spatial and temporal gene expression patterns during differentiation remains to be elucidated but it is clear that regulated changes in higher-order genomic architecture plays a fundamental role. Specifically, long range interactions within and between chromosomes and the position of chromosome territories in the nucleus are controlled by TADs and LADs respectively, but the relationship between these genomic organizers remains poorly understood Overall design: We analyzed the large-scale spatial reorganization of chromatin by generating matched Hi-C and nuclear lamin-chromatin contact datasets throughout a dual adipose/neuronal induction of human primary adipose stem cells. We have mapped Hi-C (TADs) and lamin-associated domains (LADs) in multiple steps during adipose stem cell differentiation to characterize the spatial and temporal link between genomic architecture and gene expression. We identify a new level of 4D genomic organization involving a long-range clustering of individual TADs or TAD pairs into TAD cliques. LADs appear to regulate their formation. (ASCs). We unveil a lineage-specific dynamic assembly and disassembly of repressive cliques of linearly non-contiguous TADs, and a time course-coupled relationship between TAD clique size and lamina association. Our findings reveal a new level of developmental genome organization and provide an overview of large-scale changes in the 4D nucleome during lineage-specific differentiation.

Publication Title

Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42538
Knockdown of mineralocorticoid receptor or glucocorticoid receptor on human endometrial stromal cells and decidualization
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To clarify mineralcorticoid receptor and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.

Publication Title

Induction of 11β-HSD 1 and activation of distinct mineralocorticoid receptor- and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP015670
Identification of genes critical for resistance to infection by West Nile virus using RNA-Seq analysis
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Background: West Nile virus is an emerging infection of biodefense concern and there are no available treatments or vaccines. Here we used a high-throughput method based on a novel gene expression analysis, RNA-Seq, to give a global picture of differential gene expression by primary human macrophages of 10 healthy donors infected in vitro with WNV. Results: From a total of 50 million reads per sample, we employed a Bayesian hierarchical mixture model to identify 4,026 transcripts that were differentially expressed after infection. Both predicted and novel gene changes were detected, as were gene isoforms, and while many of the genes were expressed by all donors, some were unique. Knock-down of genes not previously known to be associated with WNV resistance identified their critical role in control of viral infection. Conclusions: Our study distinguishes both common gene pathways as well as novel cellular responses. Such analysis will be valuable for translational studies of susceptible and resistant individuals -- and for targeting therapeutics -- in multiple biological settings. Overall design: Differential gene expression by primary human macrophages of 10 healthy donors infected in vitro with WNV were generated by RNA-Seq.

Publication Title

Identification of genes critical for resistance to infection by West Nile virus using RNA-Seq analysis.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE13353
Comparison of gene expression between ruptured and unruptured human intracranial aneurysms
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background and Purpose

Publication Title

Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19618
Expression data from E10.5 mouse otocyst
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We established a novel EGFP reporter mouse line (named Tg(ETAR-EGFP)14Imeg), which enables the placode-derived inner ear sensory cell lineage to be visualized and monitored. At E10.5, EGFP expression was detected in the ventral and dorsomedial region of the otocyst.

Publication Title

Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62210
Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntingtons model mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Huntingtons disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer lifespans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyglutamine length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.

Publication Title

Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33106
Expression data from livers in wildtype and Sox17+/-mice at 17dpc
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The onset of the liver inflamentation in the Sox17+/- embryos.

Publication Title

Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51754
Expression data of blood (BVEC) versus lymphatic (LVEC) vascular endothelial silenced for RhoB and VEZF1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

RhoB null mice show decreases in pathological angiogenesis in the ischemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge.

Publication Title

RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE28391
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis
  • organism-icon Gallus gallus, Mus musculus, Xenopus laevis
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates.

Publication Title

Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact