refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 42 results
Sort by

Filters

Technology

Platform

accession-icon GSE60582
Gene expression profile of splenic CD19 cells from NTg, PTPROt Tg, TCL1 Tg and PTPROt/TCL1 double Tg mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

TCL1 is an an oncogene and transgenic (Tg) mice expressing TCL1 specifically in B-cells are well-characterized models for chronic lymphocytic leukemia. On the contrary, PTPROt is a phosphatase with tumor suppressor characteristics in many cancers including leukemia. Our hypothesis was that transgenic expression of PTPROt in the B-cells of TCL1 Tg mice will alleviate disease phenotype and allow the study of the in vivo mechanism of action of PTPROt. To test this we have generated Tg mice with B-cell specific expression of PTPROt and crossed these mice with the TCL1 Tg mice.

Publication Title

PTPROt-mediated regulation of p53/Foxm1 suppresses leukemic phenotype in a CLL mouse model.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP068046
G9a-Mediated Methylation of ERa Links the PHF20/MOF Histone Acetyltransferase Complex to Hormonal Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The euchromatin histone methyltransferase 2 (EHMT2, aka G9a) methylates histone H3K9 to repress gene expression, but it also acts as a coactivator for some nuclear receptors. The molecular mechanisms underlying this activation remain elusive. Here we show that G9a functions as a bona fide coactivator of the endogenous estrogen receptor a (ERa) in breast cancer cells in a histone methylation-independent manner. G9a dimethylates ERa protein at lysine 235 both in vitro and in cells. Dimethylation of ERaK235 (ERaK235me2) is recognized by the Tudor domain of PHF20, which in turn recruits the MOF histone acetyltransferase (HAT) complex to ERa target gene promoters to deposit histone H4K16 acetylation promoting active transcription. Together, our in vitro and in vivo data establish the molecular mechanism by which G9a functions as an ERa coactivator. Along with the PHF20/MOF complex, G9a links the crosstalk between ERa methylation and histone acetylation governing the epigenetic regulation of hormonal gene expression. Overall design: G9a KD RNA-seq and PHF20 KD RNA-seq with and without E2 treatment

Publication Title

G9a-mediated methylation of ERα links the PHF20/MOF histone acetyltransferase complex to hormonal gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60149
Global hepatic transcript data from fasted male BXD strains on chow or high fat diet
  • organism-icon Mus musculus
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcript data from livers from fasted-state BXD strains on chow or high fat diet

Publication Title

Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42589
Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88x10-2 5.02x10-9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 involved in DNA repair are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show that cellular defences against DNA damage may take part in the pathogenesis of NSCL/P, in accordance with the hypothesis of aetiological overlap between this malformation and cancer. These results provide more information regarding the aetiology of NSCL/P and have the potential tocan potentially assist incontribute to the development of future preventive strategies.

Publication Title

Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP156760
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis [Timecourse RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 910 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).

Publication Title

Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP156757
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis [AGO2-RIP-Seq -miRNAs]
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.

Publication Title

Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE33221
Conserved molecular interactions within MYST-ING acetyltransferase complexes that regulate cell proliferation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE33220
Effects of the JADE-HBO1 complex on gene expression
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

We find that 499 genes are up-regulated and 457 are down-regulated in response to over-expression of JADE1, while 397 genes are up-regulated and 385 are down-regulated after HBO1 knock-down.

Publication Title

Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP078912
RNAseq from disomic and trisomic T cells and monocytes
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNA was sequenced from Disomic and Trisomic individuals for chromosome 21 to identify consistent changes in gene expression across individuals Overall design: Cells were cultured at subconfluency and RNA harvested for sequencing

Publication Title

Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE64613
CaMKII inhibition in smooth muscle cells controls Ang-II-induced gene transcription in the aorta
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The Ca2+/calmodulin-dependent kinase II is expressed in smooth muscle and believed to mediate intracellular calcium handling and calcium-dependent gene transcription. CaMKII is activated by Angiotensin-II.

Publication Title

Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact