refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 65 results
Sort by

Filters

Technology

Platform

accession-icon SRP094555
Transcriptome-wide landscape of subcellular mRNA redistribution in cell stress
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In cell stress, mRNA in the cytoplasm is sequestered to the insoluble ribonucleoprotein (RNP) compartments containing stress granules. These RNP granules are known to be involved in the control of mRNA processing and decay, but it has been elusive whether the mRNA redistribution in cell stress is universal or specific to a subset of transcripts. Here we provide a transcriptome-wide profiles of the RNP granules in cell stress and show that mRNA accumulation in stress granule differentially affects individual  transcripts. mRNA species accumulated in stress granules are largely conserved across distinct stress types, such as in endoplasmic reticulum stress, heat shock and arsenic stress. Many mRNA species involved in cell survival and proliferation are more dynamically redistributed, suggesting that mRNA sequestration can be a specific response mechanism through which cells can reshape the landscape of their transcriptome and affect the cell fate determination in stress conditions . Overall design: 24 samples are analyzed, which include 3 replicates for control (DMSO) cytoplasmic fraction, 3 replicates of control (DMSO) RNP granule fraction, 3 replicates of Thapsigargin treated cytoplasmic fraction, 3 replicates of Thapsigargin treated RNP granule fraction, 2 replicates of control (H2O) cytoplasmic fraction, 2 replicates of control (H2O) RNP granule fractions, 2 replicates of heat shock (HS) treated cytoplsmic fraction (HS), 2 replicates of heat shock (HS) treated RNP granule fraction, 2 replicates of arsenite treated cytoplasmic fraction, and 2 replicates of arsenite treated RNP granule fraction.

Publication Title

Systematic Characterization of Stress-Induced RNA Granulation.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP003416
GRO-seq in Drosophila melanogaster S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina Genome Analyzer

Description

Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila's extensive use of directional core promoter sequence elements, which contrasts with mammals' lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription. Overall design: Comparison of multiple GRO-seq data sets

Publication Title

Defining the status of RNA polymerase at promoters.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE55002
Transcription array by profiling in WT and SRC-2 null mouse liver
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The molecular targets of SRC-2 regulation in the murine liver stimulate fatty acid degradation and glycolytic pathway while fatty acid, cholesterol, and steroid biosynthetic pathways are down-regulated.

Publication Title

The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26244
Expression data from cytoplasmic hybrid (cybrid) and rho0 cells
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mitochondria have been implicated in insulin resistance and beta cell dysfunction, both of which comprise the core pathophysiology of type 2 diabetes mellitus (T2DM). It has also recently been found that mtDNA haplogroups are distinctively associated with susceptibility to T2DM at least in Koreans and Japanese.

Publication Title

Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring type 2 diabetes-associated mitochondrial DNA haplogroups.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP017251
Genome-wide control of RNA polymerase II activity by cohesin (sequencing)
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesin’s roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin directly promotes transcription of the myc gene, and cohesin depletion reduces Pol II activity at most Myc target genes. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity. Overall design: The PRO-seq method was used to measure transcriptionally engaged Pol II genome-wide in two replicates each of mock RNAi-treated, Nipped-B RNAi-treated, and Rad21 RNAi-treated ML-DmBG3-c2 cells.

Publication Title

Genome-wide control of RNA polymerase II activity by cohesin.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE45773
Expression data from GPR15+CD4+ and GPR15-CD4+ T cells in LILP
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

GPR15 is an orphan G-protein coupled receptor and its expression is abundant among T cells in the large intestine lamina propria.

Publication Title

GPR15-mediated homing controls immune homeostasis in the large intestine mucosa.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP062407
Genome-wide profilings of transcriptome and translatome in mouse hippocampi after contextual fear conditioning
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Memory stabilization after learning requires transcriptional and translational regulations in the brain, yet the temporal molecular changes following learning have not been explored at the genomic scale. We here employed ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in mouse hippocampus following contextual fear conditioning. We identified 104 genes that are dynamically regulated. Intriguingly, our analysis revealed novel repressive regulations in the hippocampus: translational suppression of ribosomal protein-coding genes at basal state; learning-induced early translational repression of specific genes; and late persistent suppression of a subset of genes via inhibition of ESR1/ERa signaling. Further behavioral analyses revealed that Nrsn1, one of the newly identified genes undergoing rapid translational repression, can act as a memory suppressor gene. This study unveils the yet unappreciated importance of gene repression mechanisms in memory formation. Overall design: The application of ribosome profiling and RNA-seq techniques to mouse hippocampi tissues after contextual fear conditioning and to mouse hippocampal primary cultures. Mouse ESCs were also examined.

Publication Title

Multiple repressive mechanisms in the hippocampus during memory formation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27429
Expression data at 24 hours after the blocking of Shh signaling in tooth germs at embryonic day 14
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The genetic mechanism governing the spatial patterning of teeth still remains to be elucidated. Sonic hedgehog (Shh) is one of key signaling molecules involved in the spatial patterning of teeth. By utilizing maternal transfer of 5E1 (an IgG1 monoclonal antibody against Shh protein) through the placenta to block Shh signaling, we investigated the changes in tooth patterning and in gene expression.

Publication Title

Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE104793
Interleukin-1 effect on primary mouse articular chondrocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Gene expression profiling of primary mouse articular chondrocyte treated with interleukin-1.

Publication Title

Estrogen-related receptor γ causes osteoarthritis by upregulating extracellular matrix-degrading enzymes.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP132291
A Lignin Molecular Brace Controls Precision Processing of Cell Wall Critical for Surface Integrity in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The cell wall is a defining feature of plant cells and glues cells to each other. To overcome this physical constraint, plants must process and disconnect cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical 'brace' to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Altogether, we show how plants precisely accomplish abscission. Overall design: RECs (Residuum cells, abscission zone cells of the receptacle) and SECs (Secession cells, abscission zone cells of separated floral organs) were isolated using fluorescence-activated cell sorting of cells from transgenic plants harboring proQRT2::nlsGFP–GUS construct, and their transcriptomes were analyzed by RNA-sequencing.

Publication Title

A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact