refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 64 results
Sort by

Filters

Technology

Platform

accession-icon GSE40972
EZH2 Inhibition as a Therapeutic Strategy for Lymphoma with EZH2 Activating Mutations
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE40971
Gene expression profiling of EZH2 mutant and wild type DLBCL cell lines treated with EZH2 inhibitor
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied transcriptional changes by Affymetrix human microarrays in DLBCL cell lines as a result of treatment with GSK126, a potent, highly-selective, SAM-competitive, small molecule inhibitor of EZH2

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE41239
Gene expression profiling of two DLBCL cell lines upon shRNA mediated knockdown of EZH2
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied transcriptional changes by Affymetrix human microarrays in 2 DLBCL cell lines as a result of shRNA mediated knockdown of EZH2.

Publication Title

EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE56525
Distinct human stem cell populations in small and large intestine
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.

Publication Title

Distinct human stem cell populations in small and large intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE3254
Variability in Microarray Labeling Methods
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Considerable variation in gene expression data from different DNA microarray platforms has been demonstrated. However, no characterization of the source of variation arising from labeling protocols has been performed. To analyze the variation associated with T7-based RNA amplification/labeling methods, aliquots of the Stratagene Human Universal Reference RNA were labeled using 3 eukaryotic target preparation methods and hybridized to a single array type (Affymetrix U95Av2). Variability was measured in yield and size distribution of labeled products, as well as in the gene expression results. All methods showed a shift in cRNA size distribution, when compared to un-amplified mRNA, with a significant increase in short transcripts for methods with long IVT reactions. Intra-method reproducibility showed correlation coefficients >0.99, while inter-method comparisons showed coefficients ranging from 0.94 to 0.98 and a nearly two-fold increase in coefficient of variation. Fold amplification for each method was positively correlated with the number of present genes. Two factors that introduced significant bias in gene expression data were observed: a) number of labeled nucleotides that introduces sequence dependent bias, and b) the length of the IVT reaction that introduces a transcript size dependent bias. This study provides evidence of amplification method dependent biases in gene expression data.

Publication Title

In vitro transcription amplification and labeling methods contribute to the variability of gene expression profiling with DNA microarrays.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41075
Transcriptome profiling of endometrial biopsies inflammatory response to Chlamydia trachomatis genital tract infection
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Chlamydia trachomatis is an obligate intracellular Gram-negative bacterium that frequently causes an asymptomatic genital tract infection, gradually cleared by host immunity

Publication Title

Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust Type 2 immunity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21221
Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Dupuytren's contracture (DC) is the most common inherited connective tissue disease of humans and is hypothesized to be associated with aberrant wound healing of the palmar fascia. Fibroblasts and myofibroblasts are believed to play an important role in the genesis of DC and the fibroproliferation and contraction that are hallmarks of this disease. This study compares the gene expression profiles of fibroblasts isolated from DC patients and controls in an attempt to identify key genes whose regulation might be significantly altered in fibroblasts found within the palmar fascia of Dupuytren's patients. Total RNA isolated from diseased palmar fascia (DC) and normal palmar fascia (obtained during carpal tunnel release; 6 samples per group) was subjected to quantitative analyses using two different microarray platforms (GE Code Link and Illumina) to identify and validate differentially expressed genes. The data obtained was analyzed using The Significance Analysis of Microarrays (SAM) software through which we identified 69 and 40 differentially regulated gene transcripts using the CodeLink and Illumina platforms, respectively. The CodeLink platform identified 18 upregulated and 51 downregulated genes. Using the Illumina platform, 40 genes were identified as downregulated, eleven of which were identified by both platforms. Quantitative RT-PCR confirmed the downregulation of three high-interest candidate genes which are all components of the extracellular matrix: proteoglycan 4 (PRG4), fibulin-1 (FBLN-1) transcript variant D, and type XV collagen alpha 1 chain. Overall, our study has identified a variety of candidate genes that may be involved in the pathophysiology of Dupuytren's contracture and may ultimately serve as attractive molecular targets for alternative therapies.

Publication Title

Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE61302
Expression Analysis of Human Adipose-Derived Stem Cells During In Vitro Differentiation to an Adipocyte Lineage
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype by microarray analysis.

Publication Title

Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36401
Epigenomic enhancer profiling defines a signature of colon cancer
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenomic enhancer profiling defines a signature of colon cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36400
All exon array expression data in normal colon and primary colon cancer lines [expression]
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Cancer is characterized by gene expression aberrations. Studies have largely focused on coding sequences and promoters, despite the fact that distal regulatory elements play a central role in controlling transcription patterns. Here we utilize the histone mark H3K4me1 to analyze gain and loss of enhancer activity genome wide in primary colon cancer lines relative to normal colon crypts. We identified thousands of variant enhancer loci (VELs) that comprise a signature that is robustly predictive of the in vivo colon cancer transcriptome. Furthermore, VELs are enriched in haplotype blocks containing colon cancer genetic risk variants, implicating these genomic regions in colon cancer pathogenesis. We propose that reproducible changes in the epigenome at enhancer elements drive a unique transcriptional program to promote colon carcinogenesis.

Publication Title

Epigenomic enhancer profiling defines a signature of colon cancer.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact