refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon GSE56525
Distinct human stem cell populations in small and large intestine
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.

Publication Title

Distinct human stem cell populations in small and large intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP062144
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (RNA-seq AML development)
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 AML

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062170
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (RNA-seq B-ALL)
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: study of transcriptome during the development of MLL-AF9 B-ALL

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061972
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets [RNA-Seq_AML]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of several AML cell lines

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061973
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets [RNA-Seq_normal]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of normal cells (CD34+) from different donors

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062417
Integrated analysis of MLL-AF9 AML patients and model leukemias highlights RET and other novel therapeutic targets (Leukemia Cell Bank)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Next generation DNA sequencing of acute myeloid leukemia (AML) patient samples has revealed novel recurrent mutations while at the same time highlighting the genetic heterogeneity of the disease. These observations suggest that an extraordinarily large number of combinations of mutations can contribute to leukemogenesis. In order to address the question of the contribution of patient genetic background to AML we have developed a model system to generate multiple human leukemias in a single donor’s genetic background. Stepwise RNA-seq data from this model shows that in the context of AML driven by the MLL-AF9 (MA9) oncogene, the genetic background of the donor does not have a detectable effect. Comparison of these model leukemias from multiple single donors to AML patient samples containing MA9 translocations revealed conserved gene expression patterns not previously highlighted in this genetic sub-type. We further demonstrate that the expression of one of these genes, RET, is essential both in vivo and in vitro growth of MA9 AMLs . Overall design: Transcriptome of MLL-AF9 AML pediatric patients

Publication Title

Modeling human MLL-AF9 translocated acute myeloid leukemia from single donors reveals RET as a potential therapeutic target.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8951
A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Dominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer light-independent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su & Lagarias 2007 Plant Cell 19, 2124-2139). In the present study, comparative transcript profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Whole genome transcriptional profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to, but quantitatively greater than those of wild-type seedlings grown under 15 or 50 umol m-2 m-1 continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-modulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.

Publication Title

A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34390
dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.
  • organism-icon Drosophila melanogaster
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Transcription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was uncovered through the identification of dRING-associated factors (dRAF), a novel Polycomb group (PcG) silencing complex harboring the histone H2A ubiquitin ligase dRING, PSC and the F-box protein, and demethylase dKDM2. In vivo, dKDM2 shares many transcriptional targets with Polycomb and counteracts the histone methyltransferases TRX and ASH1. Importantly, cellular depletion and in vitro reconstitution assays revealed that dKDM2 not only mediates H3K36me2 demethylation but is also required for efficient H2A ubiquitylation by dRING/PSC. Thus, dRAF removes an active mark from histone H3 and adds a repressive one to H2A. These findings reveal coordinate trans-histone regulation by a PcG complex to mediate gene repression.

Publication Title

dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87330
Influence of Anti-VEGFA and dexamathasone treatments on the early phase of cornea angiogenesis
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Inflammation is a key component of pathological angiogenesis. Here we monitor gene expression profiles of the pre-sprouting phase of corneal angiogenesis in the rat model, as influenced by topically applied treatments.

Publication Title

Genome-wide expression differences in anti-Vegf and dexamethasone treatment of inflammatory angiogenesis in the rat cornea.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE81418
Expression data from Rattus norvegicus cornea
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase.

Publication Title

Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact