refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 99 results
Sort by

Filters

Technology

Platform

accession-icon GSE42932
TGF-beta 1 effect on primary bovine aortic endothelial cells
  • organism-icon Bos taurus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Analysis of primary bovine aortic endothelial cells treated for 24 hours with TGF-beta 1 5 ng/ml. TGF-beta 1 has been shown to induce endothelial-to-mesenchymal transition (EndoMT) and to be implicated in differentiation of endothelial cells into smooth muscle-like cells as occurred in vascular neointimal formation.

Publication Title

LOXL4 is induced by transforming growth factor β1 through Smad and JunB/Fra2 and contributes to vascular matrix remodeling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77558
Analysis of differentially expressed genes between Huntingtons disease and control iPSCs derived GABA MS-like neurons
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Huntingtons disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons under defined culture conditions. Analysis of differentially expressed genes between Huntingtons disease and wild type iPSCs derived GABA MS-like neurons has been performed.

Publication Title

Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE8951
A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Dominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer light-independent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su & Lagarias 2007 Plant Cell 19, 2124-2139). In the present study, comparative transcript profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Whole genome transcriptional profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to, but quantitatively greater than those of wild-type seedlings grown under 15 or 50 umol m-2 m-1 continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-modulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.

Publication Title

A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30356
Expression data from FAK null mouse embryonic fibroblasts treated with endothelin-1
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Endothelin-1 (ET-1) plays a critical role in connective tissue remodeling by fibroblasts during tissue repair and fibrosis. We investigated the molecular pathways in the transmission of ET-1 signals that lead to features of connective tissue remodeling, in particular the role of FAK (focal adhesion kinase).

Publication Title

Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE56525
Distinct human stem cell populations in small and large intestine
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.

Publication Title

Distinct human stem cell populations in small and large intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34390
dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.
  • organism-icon Drosophila melanogaster
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Transcription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was uncovered through the identification of dRING-associated factors (dRAF), a novel Polycomb group (PcG) silencing complex harboring the histone H2A ubiquitin ligase dRING, PSC and the F-box protein, and demethylase dKDM2. In vivo, dKDM2 shares many transcriptional targets with Polycomb and counteracts the histone methyltransferases TRX and ASH1. Importantly, cellular depletion and in vitro reconstitution assays revealed that dKDM2 not only mediates H3K36me2 demethylation but is also required for efficient H2A ubiquitylation by dRING/PSC. Thus, dRAF removes an active mark from histone H3 and adds a repressive one to H2A. These findings reveal coordinate trans-histone regulation by a PcG complex to mediate gene repression.

Publication Title

dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE37892
A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III.
  • organism-icon Homo sapiens
  • sample-icon 128 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Colorectal cancer is one of the most common cancers in the world. Histological staging is efficient but combination with molecular markers may improve tumors classification. Gene expression profiles have been defined as prognosis predictors among stage II and III tumors but their implementation in medical practice remains controversial. Stage-II tumors have been recognized as a heterogeneous group and high-risk morphologic features have been retained as justifying adjuvant chemotherapy. We propose here the investigation of clinical features and expression profiles from stage II and stage III colon carcinomas without DNA mismatch repair defect. A series of 130 colon cancer samples was retained. Expression profiles were established on oligonucleotide microarrays and processed in the R/Bioconductor environment. Hierarchical then supervised analyses were successively performed applying the data-sampling approach. A molecular signature of seven genes was found to cluster stage III tumors with an adjusted p-values lower than 10^-10. A subgroup of stage-II tumors aggregated this cluster in both series. No correlation was found between with the disease severity but the function of the discriminating genes suggests that tumors have been classified according to their putative response to adjuvant targeted or classic therapies. Further pharmacogenetic studies might document this observation.

Publication Title

A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26906
APC colon stage II
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of expression profiles in stage II colon cancer according to the APC gene status

Publication Title

Expression Profiles in Stage II Colon Cancer According to APC Gene Status.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE23980
Expression data from human soft tissue sarcomas with complex genomics
  • organism-icon Homo sapiens
  • sample-icon 164 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differentially expressed genes between 171 human soft tissue sarcomas with complex genomics

Publication Title

From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE71121
Expression data (micro-array and RNA-seq, frozen tumors and FFPE blocks) from various sarcomas
  • organism-icon Homo sapiens
  • sample-icon 259 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RNA sequencing validation of the Complexity INdex in SARComas prognostic signature.

Sample Metadata Fields

Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact