refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon SRP066432
Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor, MONGOOSE1  
  • organism-icon Arabidopsis thaliana
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq data for Col-0. cob-6, sfr6-3 and cob-6sfr6-3 Overall design: 7 days old seedlings grown in 24h light with 0

Publication Title

Identification of MEDIATOR16 as the Arabidopsis COBRA suppressor MONGOOSE1.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP007567
Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity of Mammalian Proteomes
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina HiSeq 2000

Description

The ability to sequence genomes has far outstripped approaches for deciphering the information they encode. Here we present a suite of techniques, based on ribosome profiling (the deep-sequencing of ribosome-protected mRNA fragments), to provide genome-wide maps of protein synthesis as well as a pulse-chase strategy for determining rates of translation elongation. We exploit the propensity of harringtonine to cause ribosomes to accumulate at sites of translation initiation together with a machine learning algorithm to define protein products systematically. Analysis of translation in mouse embryonic stem cells reveals thousands of strong pause sites and novel translation products. These include amino-terminal extensions and truncations and upstream open reading frames with regulatory potential, initiated at both AUG and non-AUG codons, whose translation changes after differentiation. We also define a new class of short, polycistronic ribosome-associated coding RNAs (sprcRNAs) that encode small proteins. Our studies reveal an unanticipated complexity to mammalian proteomes. Overall design: Examination of translation in mouse embryonic stem cells and during differentiation into embryoid bodies

Publication Title

Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP058128
Montelukast counteracts the influenza virus-induced block in unfolded protein stress response and reduces virus multiplication
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and economy. Therefore, a large effort has been devoted to the development of new anti-influenza drugs directed to viral targets, as well as to the identification of cellular targets amenable for anti-influenza therapy. Here we describe a new approach to identify such potential cellular targets by screening collections of drugs approved for human use. We reasoned that this would most probably ensure addressing a cellular target and, if successful, the compound would have a well known pharmacological profile. In addition, we reasoned that a screening using a GFP-based recombinant replicon system would address virus trancription/replication and/or gene expression, and hence address a stage in virus infection more useful for inhibition. By using such strategy we identified Montelukast as an inhibitor of virus gene expression, which reduced virus multiplication in virus-infected cells but did not alter virus RNA synthesis in vitro or viral RNA accumulation in vivo. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated or not with Montelukast, we identified the PERK-mediated unfolded protein response as the pathway responsible for Montelukast action. Accordingly, PERK phosphorylation was inhibited in infected cells but stimulated in Montelukast-treated cells. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. Overall design: Comparison of gene expression measured by deep sequencing (single-ends, 50nt, RNA-seq) of "Infected", "Not infected", "Infected+Montelukast" and "Not infect+Montelukast" in human A549 cells. Infected means "Infected with influenza virus".

Publication Title

Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25485
Gene expression data in Bone Marrow Derived Dendritic Cells (BMDC) following nanoemulsion adjuvant exposure
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Antigen uptake, processing and presentation by dendritic cells are regulated by complex intra- and inter-cellular signalling events. Typical vaccine adjuvants lead to the transcription of pro-inflammatory cytokines and chemokines which relate to immune induction.

Publication Title

Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE20752
Comparative Epigenomic Analysis of Murine and Human Adipogenesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative epigenomic analysis of murine and human adipogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE20697
Expression profiling of human adipose stromal cell (hASC) adipogenesis
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human abdominal adipose tissue was obtained with informed consent from a 33-year old Caucasian female (BMI = 32.96 Kg/m2) undergoing lipoaspiration. Adipose stromal cells (hASCs) were isolated and differentiated into adipocytes in vitro.

Publication Title

Comparative epigenomic analysis of murine and human adipogenesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE9691
Analysis of the effects of loss of E-cadherin and cell adhesion on human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts - an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherin's cell-cell adhesion and intracellular signaling functions. While the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness and anoikis-resistance. We find the E-cadherin binding partner beta-catenin to be necessary but not sufficient for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.

Publication Title

Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE20696
Expression profiling of 3T3-L1 adipogenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

3T3-L1 pre-adipocyte cells were grown to confluence and induced to differentiate in adipogeneic media.

Publication Title

Comparative epigenomic analysis of murine and human adipogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60932
Gene expression changes in limb buds of Nipbl-haploinsufficient mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Multiple genes are dysregulated in hindlimb buds of Nipbl-deficient embryos. In all, more than 1000 limb bud genes were found to be significantly altered in expression by microarray analysis of E10.5 mouse hindlimb buds.

Publication Title

Nipbl and mediator cooperatively regulate gene expression to control limb development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17215
Expression data from paclitaxel and salinomycin-treated HMLER breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs

Publication Title

Identification of selective inhibitors of cancer stem cells by high-throughput screening.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact