refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon GSE9432
A SAGA-Independent Function of SPT3 Mediates Transcriptional Deregulation in a Mutant of the Ccr4-Not Complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The conserved multi-subunit Ccr4-Not complex regulates gene expression in diverse ways. In this work, we characterize the suppression of temperature sensitivity associated with a mutation in the gene encoding the scaffold subunit of the Ccr4-Not complex, NOT1, by the deletion of SPT3.

Publication Title

A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041548
Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Approximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, most noncoding RNA (ncRNA) is rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from approximately 57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs). We show that esBAF functions both to keep NDRs nucleosome-free and to promote elevated nucleosome occupancy adjacent to NDRs. Reduction of adjacent nucleosome occupancy upon esBAF depletion is strongly correlated with ncRNA expression, suggesting that flanking nucleosomes form a barrier to pervasive transcription. Upon forcing nucleosome occupancy near an NDR using a nucleosome-positioning sequence, we find that esBAF is no longer required to silence transcription. These data reveal a novel role for esBAF in suppressing pervasive transcription from open chromatin regions in ESCs. Overall design: Examine nucleosome occupancy (MNase-Seq) and transcript production (CapSeq and RNA-Seq) in EGFP KD and Smarca4 KD ESCs

Publication Title

Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE144248
Cholesterol homeostasis modulates platinum sensitivity in human ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Here we show that platinum-resistant ovarian cancer cells also show reduced cholesterol biosynthesis, and mostly rely on uptake of exogenous cholesterol for their needs. Expression of FDPS and OSC, enzymes involved in cholesterol synthesis, are decreased both in drug-resistant cells and upon TRAP1 silencing, whereas the expression of LDL receptor, the main mediator of extracellular cholesterol uptake, is increased. Strikingly, treatment with different statins to inhibit cholesterol synthesis reduces cisplatin-induced apoptosis, whereas silencing of LIPG, an enzyme involved in lipid metabolism, increases sensitivity to the drug.

Publication Title

Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE12236
Whole Genome Exon Arrays Identify Differential Expression of Alternatively Spliced, Cancer-related Genes in Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Alternative processing of pre-mRNA transcripts is a major source of protein diversity in eukaryotes and has been implicated in several disease processes including cancer. In this study we have performed a genome wide analysis of alternative splicing events with the GeneChip Human Exon 1.0 ST Array from Affymetrix in lung adenocarcinoma. We found that ~13.3% of the 17800 core Refseq genes appear to have alternative transcripts that are differentially expressed in lung adenocarcinoma versus normal. According to their known functions the largest subset of these genes (30.8%) is believed to be cancer related. Detailed analysis was performed for several genes using PCR, quantitative RT-PCR and DNA sequencing. We found overexpression of ERG variant 2 but not variant 1 in lung tumors and overexpression of CEACAM1 variant 1 but not variant 2 in lung tumors but not in breast or colon tumors. We also identified a novel, overexpressed variant of CDH3 and verified the overexpression of a novel variant of P16. These findings demonstrate how analysis of alternative pre-mRNA processing can shed additional light on differences between tumors and normal tissues as well as between different tumor types. Such studies may lead to the development of additional tools for tumor diagnosis, prognosis and therapy.

Publication Title

Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon SRP159284
Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In the central nervous system (CNS), the microRNAs (miRNAs), small endogenous RNAs exerting a negative post-transcriptional regulation on mRNAs, are involved in major functions, such as neurogenesis, and synaptic plasticity. Moreover, they are essential to define the specific transcriptome of the tissues and cell types. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, even through rat is a major model in neuroscience. We determined the miRNome profile of the hippocampus, the cortex, the striatum, the spinal cord and the olfactory bulb, by small RNA-Seq. We found a total of 365 known miRNAs' and 90 novel miRNAs expressed in the CNS of the rat. Novel miRNAs seemed to be important in defining structure-specific miRNomes. Differential analysis showed that several miRNAs were specifically enriched/depleted in these CNS structures. Then, we correlated miRNAs' expression with the expression of their mRNA targets by mRNA-Seq. This analysis suggests that the transcriptomic identity of each structure is regulated by specific miRNAs. Altogether, these results suggest the critical role played by these enriched/depleted miRNAs in the functional identities of CNS structures. Overall design: miRNA and mRNA profile of 5 structures of the central nervous system of rat, for each structurewe analyzed three biological replicates

Publication Title

Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE118050
Protein Syndesmos is a novel RNA binding protein that regulates primary cilia formation
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protein Syndesmos is a novel RNA-binding protein that regulates primary cilia formation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25009
Drosophila miR-34 mechanistically links aging and neurodegeneration
  • organism-icon Drosophila melanogaster
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE25008
Drosophila brain gene expression between wildtype and miR-34 null flies
  • organism-icon Drosophila melanogaster
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

gene expression profiles in fly brains between wildtype and miR-34 null flies

Publication Title

The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE25007
Drosophila brain gene expression with age: mRNA profiling
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

gene expression profiles in fly brains with age

Publication Title

The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE66171
Epithelial inactivation of Yy1 abrogates lung branching morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation while Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching, and caused airway dilation similar to those seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be explained by the reduced expression of Shh in lung endoderm, a transcriptional target of YY1, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the critical requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.

Publication Title

Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact