refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 383 results
Sort by

Filters

Technology

Platform

accession-icon SRP043036
Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Description

During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle. Overall design: Ribosome profiling, or sequencing of ribosome-protected mRNA fragments, in yeast. We assay ribosome footprint sizes and positions in three conditions: untreated yeast (3 replicates) and yeast treated with translation inhibitors cycloheximide (2 replicates) and anisomycin (2 biological replicates, one technical replicate). We also treat yeast with 3-aminotriazole to measure the effect of limited histidine tRNAs on ribosome footprint size and distribution (two treatment durations).

Publication Title

Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP166459
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [Modifications - validation]
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T and HepG2 cells were transfected with regular and modified pCAG-BE3-P2A-EGFP or control pCAG-nCas9(D10A)-UGI-NLS-P2A-EGFP or control pCAG-P2A-EGFP constructs with various gRNAs as described below. Cells were sorted for top 5% GFP or all GFP + cells based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs and guides.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP166458
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [BaseEditors - RNA]
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T and HepG2 cells were transfected with pCAG-BE3-P2A-EGFP or control pCAG-nCas9(D10A)-UGI-NLS-P2A-EGFP or control pCAG-P2A-EGFP constructs with various gRNAs as described below. Cells were sorted for top 5% GFP or all GFP + cells based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs and guides.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP166457
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [Modifications - screen]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T cells were transfected with pCAG-BE3-P2A-EGFP or variants thereof or control pCAG-nCas9(D10A)-UGI-NLS-P2A-EGFP or control pCAG-P2A-EGFP constructs with various gRNAs as described below. Cells were sorted for top 5% GFP or all GFP + cells based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs and guides.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP190024
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [P2A-EGFP control]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Base Editing has been touted the most intelligent and precise application of the CRISPR platform so far, merging the simplicity of RNA-guided nucleases with deaminases that allow for the programmable generation of single base substitutions - without introduction of double-strand breaks. Even though the two-component system has been expected to cause off-target substitutions, studies involving cytosine base editors (CBEs) showed that in most cases, relatively few single base off-targets could be detected on DNA. We introduce the concept of multi-dimensional off-targeting, presenting an extensive amount of RNA cytidines being edited by DNA base editors. Epitranscriptomic off-target effects affected different cell lines and were independent of the guide RNAs used, suggesting Cas9-independent activity of the cytidine deaminase rAPOBEC1 on single-stranded RNA. With the help of protein engineering, we developed CBE variants with massively reduced inadvertent mutation of RNA that preserve and enhance DNA base editing capabilities. Overall design: HEK293T or HepG2 cells were transfected with P2A-EGFP. Cells were sorted for top 5% GFP based on FITC signal. RNA-seq was performed to measure transcriptional changes associated with different constructs.

Publication Title

Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE45981
Expression profile of melanoma cells following p300 HAT inhibition
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Epigenetic events, including covalent post-translational modification of histones, have frequently been demonstrated to play critical roles in tumor development and progression. The transcriptional coactivator, p300/CBP, possesses both histone acetyltransferase (HAT) activity as well as scaffolding properties that directly influence transcriptional activation of targeted genes. We have used a recently reported small molecule inhibitor of p300 HAT activity, C646, to explore the specific contribution of p300/CBP HAT activity to tumor development and progression. We find that C646 inhibits the growth of lineage-specific tumor cell lines including human melanomas through direct transcriptional regulation of cell cycle regulatory proteins. Further evaluation of the p300 HAT transcriptome in human melanoma cells using comprehensive gene expression profiling reveals that p300 HAT activity globally promotes cell cycle progression, nucleosome assembly, and the DNA damage checkpoint through direct transcriptional regulatory mechanisms. Additionally, C646 promotes sensitivity to DNA damaging agents leading to enhanced apoptosis of melanoma cells following combination treatment with cisplatin. Together our data suggest that p300 HAT activity regulates critical growth regulatory pathways in tumors and may serve as a novel therapeutic target for melanoma and other malignancies by promoting cellular responses to DNA damaging agents.

Publication Title

Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP150349
Integrated epigenomic and transcriptomic profiling of terminal human erythropoiesis [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In vitro cultured CD34+ derived erythroblasts were sorted using surface markers and processed using RNA-seq Overall design: Biological replicates (3 or 4 per population) were processed across 2-3 biological donors for 8 sorted populations for RNA-seq

Publication Title

Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP173199
Integrated epigenomic and transcriptomic profiling of terminal human erythropoiesis [TMCC2]
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

HUDEP-2 cells were lentivirally infected with CRISPRi constructs using a nontargeting guide or guides targeting an enhancer in the TMCC2 locus Overall design: Whole transcriptome libraries were sequenced for three replicates of non-targeting gRNA and two replicates each for two different gRNA targeting a regulatory region upstream of the TMCC2 erythroid-specific isoform

Publication Title

Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE75860
Expression data from mouse embryonic lung epithelial tip progenitor cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Epithelial tip progenitor cells are an important epithelial progenitor population in the developing lung. At early stages of development they produce SOX2+ bronchiolar progenitor cells. At later stages of embryonic lung development they produce SOX2- alveolar progenitor cells.

Publication Title

Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP111340
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single cell resolution using RNA sequencing [Smart-seq]
  • organism-icon Danio rerio
  • sample-icon 246 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Recent advances in single-cell transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. Here, we utilized massively parallel single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally-distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune cell deficiencies within prkdcD3612fs, il2rgaY91fs and double homozygous mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types including two classes of natural killer immune cells, classically-defined and erythroid-primed hematopoietic stem and progenitor cells, mucin secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first comprehensive single cell transcriptomic analysis of kidney and marrow cells in the adult zebrafish. Overall design: The goal of our study is to establish the transcriptional profiles of hematopoietic and kidney cell lineages residing in the zebrafish whole kidney marrow. Firstly, we performed single-cell RNA sequencing by a modified Smart-seq2 protocol on sorted single cells from fluorescent transgenic zebrafish lines, which label distinct blood cell types (n = 246 cells total). Secondly, we utilized droplet-based single-cell RNA sequencing (inDrop) to investigate unmarked, comprehensive hematopoietic lineage structure within wild-type, casper-strain zebrafish (N=3 animals, n=3,782 cells total). From this, we identified ten distinct hematopoietic groups of blood and immune identities. Thirdly, we confirmed blood lineage interpretations by comparing hematopoietic lineages within wild-type fish with mutant zebrafish with known immunodeficiencies, including prkdc(D3612fs) (N=3 animals, n=3,201 cells), il2rga(Y91fs) (N=2 animals, n=2,068 cells) and prkdc(D3612fs), il2rga(Y91fs) double compound mutant fish (N=2 animals, n=2,276 cells). Lastly, we identified seven structural and functional cell lineages of kidney identities in the whole kidney marrow (n=1,699 kidney cells).

Publication Title

Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact