refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 383 results
Sort by

Filters

Technology

Platform

accession-icon GSE46032
Gene expression analysis of lentivirally-transduced rhesus macaque CD34+ cells long-term following transplant
  • organism-icon Macaca mulatta
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Rhesus Gene 1.0 ST Array (rhegene10st)

Description

The occurrence of clonal perturbations and leukemia in patients transplanted with retrovirally-transduced autologous hematopoietic stem and progenitor cells (HSPCs) has stimulated extensive investigation, demonstrating that proviral insertions perturb adjacent proto-oncogene expression. Although enhancer-deleted lentiviruses are less likely to result in insertional oncogenesis, there is evidence that they may perturb transcript splicing, and one patient with a benign clonal expansion of lentivirally-transduced HPSC has been reported. The rhesus macaque model provides an opportunity for informative long-term analysis to ask whether transduction impacts on long-term HSPC properties. We utilized two techniques to examine whether lentivirally-transduced HSPCs from eight rhesus macaques transplanted 1-13.5 years previously are perturbed at a population level, comparing telomere length as a measure of replicative history and gene expression profile of vector positive versus vector negative cells. There were no differences in telomere lengths between sorted GFP+ and GFP- blood cells, suggesting that lentiviral transduction did not globally disrupt replicative patterns. Bone marrow GFP+ and GFP- CD34+ cells showed no differences in gene expression using unsupervised and principal component analysis. These studies did not uncover any global long-term perturbation of proliferation, differentiation, or other important functional parameters of transduced HSPCs in the rhesus macaque model.

Publication Title

No impact of lentiviral transduction on hematopoietic stem/progenitor cell telomere length or gene expression in the rhesus macaque model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30671
Comparison of Differences in Mouse Mammary gland gene expression data at POSTNATAL DAY 70 in Akt1wildtype versus Akt1-deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays a critical role in the regulation of several cellular processes including cell proliferation and apoptosis. In this study, we utilized Akt1+/+ and Akt1-/- C57/Bl6 female mice to demonstrate that Akt1 is required for normal mammary gland postnatal development and homeostasis. Akt1 deficiency resulted in severely delayed postnatal mammary gland growth as well as a significant decrease in the number of terminal end buds during puberty. Adult Akt1-/- mammary glands exhibited significantly fewer alveolar buds coupled with a significant increase in epithelial cell apoptosis compared to their wild-type counterparts. Microarray analysis revealed that Akt1 deficiency resulted in several altered gene expression changes and biological processes in adult mammary glands, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1-/- mammary glands by both microarray and RT-PCR validation.

Publication Title

Akt1 is essential for postnatal mammary gland development, function, and the expression of Btn1a1.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE70494
Epigenome-wide and Transcriptome-wide Analyses Reveal Gestational Diabetes is Associated with Alterations in the Human Leukocyte Antigen Complex
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation450 BeadChip (HumanMethylation450_15017482), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70493
Epigenome-wide and Transcriptome-wide Analyses Reveal Gestational Diabetes is Associated with Alterations in the Human Leukocyte Antigen Complex [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482)

Description

Gestational diabetes mellitus (GDM) affects approximately 18% of pregnancies in the United States and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by anatomical and molecular alterations in the placenta associated with GDM. To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation (Infinium HumanMethylation450 Beadchips) and expression (Affymetrix Transcriptome Microarrays) in placental tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of immune response pathways among differential expression, reflecting these coordinated changes in the MHC region. Our study represents the largest investigation of transcriptomic and methylomic differences associated with GDM, providing comprehensive insight into the molecular basis of GDM induced fetal (re)programming.

Publication Title

Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP050090
Nck2 Regulates Adiposity and Adiposity-Related Metabolic Disorders in Mice and Human
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Obesity is linked to the development of metabolic disorders. Expansion of white adipose tissue (WAT) from hypertrophy of pre-existing adipocytes and/or differentiation of precursors into new mature adipocytes contributes to obesity. We found that Nck2 expression is largely restricted to WAT, raising the hypothesis that it may play a unique function in that tissue. Using mice lacking Nck2, we found that Nck2 regulates adipocyte hypertrophy thus contributing to increased adiposity and progressive glucose intolerance, insulin resistance and hepatic steatosis. These findings were recapitulated in humans such that Nck2 expression in omental WAT was inversely correlated with the degree of obesity. Mechanistically, Nck2 deficiency promoted the induction of an adipocyte differentiation program and signaling by the PERK-eIF2a-ATF4 pathway in agreement with a role for the unfolded protein response in adipogenesis. These findings uncover Nck2 as a novel regulator of adipogenesis and that perturbation in its functionality contributes to adiposity-related metabolic disorders. Overall design: Differential gene expression profile between epididymal white adipose tissue of Nck2-/- and Nck2+/+ mice by RNA sequencing (Illumina HiSEq 2000)

Publication Title

Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45981
Expression profile of melanoma cells following p300 HAT inhibition
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Epigenetic events, including covalent post-translational modification of histones, have frequently been demonstrated to play critical roles in tumor development and progression. The transcriptional coactivator, p300/CBP, possesses both histone acetyltransferase (HAT) activity as well as scaffolding properties that directly influence transcriptional activation of targeted genes. We have used a recently reported small molecule inhibitor of p300 HAT activity, C646, to explore the specific contribution of p300/CBP HAT activity to tumor development and progression. We find that C646 inhibits the growth of lineage-specific tumor cell lines including human melanomas through direct transcriptional regulation of cell cycle regulatory proteins. Further evaluation of the p300 HAT transcriptome in human melanoma cells using comprehensive gene expression profiling reveals that p300 HAT activity globally promotes cell cycle progression, nucleosome assembly, and the DNA damage checkpoint through direct transcriptional regulatory mechanisms. Additionally, C646 promotes sensitivity to DNA damaging agents leading to enhanced apoptosis of melanoma cells following combination treatment with cisplatin. Together our data suggest that p300 HAT activity regulates critical growth regulatory pathways in tumors and may serve as a novel therapeutic target for melanoma and other malignancies by promoting cellular responses to DNA damaging agents.

Publication Title

Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE4671
Microarray Analysis of the Delipidation of White Adipose Tissue of Mice Fed Conjugated Linoleic Acid
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The white adipose tissue (WAT) rapidly loses mass when mice are fed a diet containing trans-10, cis-12 conjugated linoleic acid (t10c12 CLA). A microarray analysis of WAT due to CLA feeding was performed to better define the processes and genes involved. WAT weight decreased by ca. 80% over 17 days of feeding a 0.5% t10c12 CLA diet. The lipid volume decreased by 90% and the number of adipocytes and total cells were reduced by15% and 47%, respectively. Microarray profiling of replicated pools of control and treated mice (n=140) at seven time points over the 17day feeding indicated between 2798 to 4318 genes showed mRNA changes of 2-fold or more. Transcript levels for genes of glucose and fatty acid import or biosynthesis were significantly reduced. A prolific inflammation response was indicated by the 2 to100-fold induction of many cytokine transcripts, including those for IL-6, IL1?, TNF ligands, and CXC family members

Publication Title

Trans-10, cis-12 conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis.

Sample Metadata Fields

Age

View Samples
accession-icon GSE8681
Gene expression in mouse 3T3-L1 adipocyte tissue culture treated with CLA
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse 3T3-L1 adipocyte tissue culture. The early transcriptome changes were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 24 hr after treatment showed a common set of early gene expression changes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE8679
Gene expression in mouse white adipose tissue
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT). The early transcriptome changes in WAT were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 24 hr after treatment showed a common set of early gene expression changes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8683
Gene expression in 3T3-L1 mouse tissue (preadipocytes) treated with Trans-10,Cis-12 conjugated linoleic acid(t10c12 CLA)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Trans-10, Cis-12 conjugated linoleic acid (t10c12 CLA) causes fat loss in mouse white adipose tissue (WAT) and 3T3-L1 adipocyte tissue culture; however in preadipocyte tissue (this series) the UPS/ISR and fat loss is not detected. The early transcriptome changes in 3T3-L1 preadipocyte tissue culture were analyzed using high-density microarrays to better characterize the signaling pathways responding to t10c12 CLA. Their gene expression responses between 4 to 12 hr after treatment do not show a set of genes indicative of an integrated stress response (ISR).

Publication Title

Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact