refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 383 results
Sort by

Filters

Technology

Platform

accession-icon SRP063573
Chromatin-remodelling complex NURF is essential for differentiation of adult melanocyte stem cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

MIcrophthalmia-associated Transcription Factor (MITF) regulates melanocyte and melanoma physiology. ShRNA-mediated silencing of the NURF subunit BPTF revealed its essential role in several melanoma cell lines and in untransformed melanocytes in vitro. Comparative RNA-seq shows that MITF and BPTF co-regulate overlapping gene expression programs in cell lines in vitro. Somatic and specific inactivation of Bptf in developing murine melanoblasts in vivo shows that Bptf regulates their proliferation, migration and morphology. Once born, Bptf-mutant mice display premature greying where the second post-natal coat is white. This second coat is normally pigmented by differentiated melanocytes derived from the adult melanocyte stem cell (MSC) population that is stimulated to proliferate and differentiate at anagen. An MSC population is established and maintained throughout the life of the Bptf- mutant mice, but these MSCs are abnormal and at anagen, give rise to reduced numbers of transient amplifying cells (TACs) that do not express melanocyte markers and fail to differentiate into mature melanin producing melanocytes. MSCs display a transcriptionally repressed chromatin state and Bptf is essential for reactivation of the melanocyte gene expression program at anagen, the subsequent normal proliferation of TACs and their differentiation into mature melanocytes. Overall design: 5 samples corresponding to mRNA profiles of 501Mel and Hermes3A after BPTF shRNA-mediated knockdown were generated by deep sequencing in triplicate (Hermes 3A) or duplicate (501Mel), using HiSeq2500.

Publication Title

Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP090923
Next-gen RNA sequencing of mouse osteosarcoma tumors
  • organism-icon Mus musculus
  • sample-icon 175 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Trascriptome analysis of osteosarcoma samples were performed Overall design: Tumor samples were obtained from a previously published Sleeping Beauty forward genetic screen, cell lines were derived from previous primary tumors and sequenced using Illumina HiSeq 2000

Publication Title

Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE49089
NRASG12V oncogene mediates self-renewal in acute myelogenous leukemia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049821
Leukemia stem cell-enriched population expresses self-renewal gene-expression signature [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies. Overall design: Primary leukemia cells harvested from spleens were sorted into immunophenotypic subpopulations (Mac-1High, Mac-1LowKit–Sca-1–, Mac-1LowKit+Sca-1–, and Mac-1LowKit+Sca-1+). RNA was extracted from this subpopulations of cells and submitted for RNA sequencing.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49038
NRASG12V mediates leukemia self renewal [Microarray]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58416
Gene expression regulated by transcription factor MiT in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To understand the role of MiT in Drosophila, we set out to identify critical gene targets by looking at changes in the WT transcriptome induced by either gain or loss of MiT function. Mutant hindgut and malpighian tubules provided loss-of function tissue and nub-Gal4-driven expression of MiT in the wing epithelium was used for gain-of-function. In the wing disc experiment, 543 genes were upregulated by exogenous MiT, and 359 genes were downregulated (>1.4 fold; P value < 0.01). In the larval HG+MT, 897 genes were downregulated and 898 were upregulated (>1.4 fold; P value < 0.01) after MiT. Among these genes, 85 were both upregulated in wing discs and downregulated in mutant HG+MT, and are the common genes that regulated by MiT in both tissues.

Publication Title

Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP042212
Transcriptome Sequencing (RNA-seq) of Normal Human Osteoblasts
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Three normal human osteoblast samples, acquired from PromoCell, were used as controls to compare to RNA-seq data from prepublished osteosarcoma samples (submitted to the European Bioinformatics Institute; EGAS00001000263) for the purpose of evaluating expression levels of genes identified as common insertions sites in a Sleeping Beauty screen of osteosarcomas in mice. Overall design: Three normal human osteoblast samples (pellet form in RNAlater) were acquired from PromoCell (Heidelberg, Germany), and RNA was isolated from them immediately upon receipt.

Publication Title

A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP173313
Thymine DNA Glycosylase as a novel target for melanoma: effect of TDG silencing on gene expression in SK-mel-28 melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme Thymine DNA Glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Overall design: Six samples : cells treated with shTDG and cells treated with shControl both in triplicates.

Publication Title

Thymine DNA glycosylase as a novel target for melanoma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP171162
Single-cell RNA-seq of murine thymic Treg cell progenitors and mature Treg cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We use single-cell RNA-seq to determine distinct selection phenotypes of 2 rare thymic Treg cell progenitors as well as mature thymic Treg cells Overall design: A single cell suspension was generated from murine thymus then magnetically depleted for CD8/Ter119 before sorting CD25+Foxp3-, CD25-Foxp3lo and CD25+Foxp3+ cells from CD4+CD73- thymocytes on a BD Aria II. The 10x Genomic platform…

Publication Title

Thymic regulatory T cells arise via two distinct developmental programs.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon GSE43478
HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Heterochromatin protein 1a (HP1a) is a chromatin associated protein that has been well studied in many model organisms, such as Drosophila, where it is a determining factor for classical heterochromatin. HP1a is associated with the two histone methyltransferases SETDB1 and Su(var)3-9, which mediate H3K9 methylation marks and participate in the establishment and spreading of HP1a enriched chromatin. While HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4 specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggested that HP1a has a repressing function on chromosome 4, where it preferentially targets non-ubiquitously expressed genes (NUEGs), and a stimulating function in pericentromeric regions. Further, we showed that the effects of SETDB1 and Su(var)3-9 are similar to HP1a, and on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In contrast, transposons are repressed by HP1a and Su(var)3-9 but are un-affected by SETDB1 and POF. In addition, we found that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.

Publication Title

HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact