refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 379 results
Sort by

Filters

Technology

Platform

accession-icon GSE80654
FACS sorting of human adipose tissue stromal vascular fraction
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Adipose tissue from 6 non-obese patients was collagenase treated and adipocytes separated from the stromal vascular fraction(SVF). SVF was then FACS sorted for the following fractions CD45-/CD34+/CD31+ (endothelial), CD45-/CD34+/CD31- (progenitor), CD45+/CD14+ (monocyte/macrophage), CD45+/CD14-(Leukocyte). RNA was isolated from adipocyte, SVF, progenitor, macrophage/monocyte and leukocyte fractions and analyzed on the Affymetrix Human Transcriptome 2.0 array. We also sorted SVF from an additional 13 (10 non-obese, 9 obese) patients and sent progenitor RNA for Affymetrix Human Transcriptome 2.0 array analysis.

Publication Title

The cell-type specific transcriptome in human adipose tissue and influence of obesity on adipocyte progenitors.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE41223
LXR activation induces insulin resistance in primary human adipocytes
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The effects of LXR stimulation by GW3965 treatment on global mRNA and miRNA expression in primary human in vitro differentiated adipocytes was investigated using microarray profiling.

Publication Title

LXR is a negative regulator of glucose uptake in human adipocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE54890
Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42680
Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue [expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st), Illumina HiSeq 2000

Description

To investgate the role of EBF1 in human adipocyte, we performed global expression profiling in human adipocytes transfected with siRNA targeting EBF1.

Publication Title

Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41856
Cell growth in aggregates determines gene expression, proliferation, survival and chemoresistance of Follicular Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41855
Expression data from quiescent cells and cycling cells isolated from Multicellular aggregates of lymphoma cells (MALC)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Follicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and observed a progressive enrichment in quiescent cells in these with time of culture; these cells were sorted, as their cycling counterparts, and their transcriptomes were compared. We used microarrays to detail the differential global gene expression profile between quiescent and cycling cells isolated from MALC.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41851
Expression data from follicular lymphoma cells cultured either in suspension either as Multicellular aggregates of lymphoma cells (MALC)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Follicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and performed a pan-genomic comparative analysis between MALC and classical suspension cultures. We used microarrays to detail the global gene expression profile induced by aggregated growth of lymphoma cells.

Publication Title

Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25402
Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity
  • organism-icon Homo sapiens
  • sample-icon 119 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adipose tissue microRNAs as regulators of CCL2 production in human obesity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE25401
Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used an unbiased systems biology approach to study the regulation of gene expression in human adipose tissue focusing on inflammation. We show that microRNAs play a major role as regulators of CCL2 production in obesity.

Publication Title

Adipose tissue microRNAs as regulators of CCL2 production in human obesity.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE25910
Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity (differentiation data)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used an unbiased systems biology approach to study the regulation of gene expression in human adipose tissue focusing on inflammation. We show that microRNAs play a major role as regulators of CCL2 production in obesity.

Publication Title

Adipose tissue microRNAs as regulators of CCL2 production in human obesity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact