refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE36769
CD4+ TIL in human breast cancer
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE36765
Gene expression profiling of CD4+ T cells infiltrating human breast cancer (Discovery Set)
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD4+ helper T (Th) cells are critical regulators of immune responses but their role in breast cancer is currently unknown. This work aims to characterize Th cells infiltrating invasive primary human breast tumors, analyze the influence by the tumor microenvironment and identify Th cell specific prognostic gene signatures. CD4+ T cells isolated from the tumor (TIL), axillary lymph node (LN) and blood (PB) of 10 patients were analyzed on Affymetrix U133 Plus 2.0 arrays. A confirmation set of 60 patients were studied by flow cytometry, qRT-PCR or immunohistochemistry and analyzed according to the extent of the tumor immune infiltrate. Gene expression profiles of freshly isolated TIL were also compared with TIL that had been rested overnight or with CD4+ T cells [non-stimulated (NS) or stimulated (S)] from healthy donor PB treated with tumor supernatant (SN).

Publication Title

CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE36766
Effect of human breast tumor supernatant on normal CD4+ T cells (Confirmation Set SN)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD4+ helper T (Th) cells are critical regulators of immune responses but their role in breast cancer is currently unknown. This work aims to characterize Th cells infiltrating invasive primary human breast tumors, analyze the influence by the tumor microenvironment and identify Th cell specific prognostic gene signatures. CD4+ T cells isolated from the tumor (TIL), axillary lymph node (LN) and blood (PB) of 10 patients were analyzed on Affymetrix U133 Plus 2.0 arrays. A confirmation set of 60 patients were studied by flow cytometry, qRT-PCR or immunohistochemistry and analyzed according to the extent of the tumor immune infiltrate. Gene expression profiles of freshly isolated TIL were also compared with TIL that had been rested overnight or with CD4+ T cells [non-stimulated (NS) or stimulated (S)] from healthy donor PB treated with tumor supernatant (SN).

Publication Title

CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE36767
Gene changes of CD4+ T cells infiltrating human breast cancer in the absence of tumor environment (Confirmation Set 24h)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD4+ helper T (Th) cells are critical regulators of immune responses but their role in breast cancer is currently unknown. This work aims to characterize Th cells infiltrating invasive primary human breast tumors, analyze the influence by the tumor microenvironment and identify Th cell specific prognostic gene signatures. CD4+ T cells isolated from the tumor (TIL), axillary lymph node (LN) and blood (PB) of 10 patients were analyzed on Affymetrix U133 Plus 2.0 arrays. A confirmation set of 60 patients were studied by flow cytometry, qRT-PCR or immunohistochemistry and analyzed according to the extent of the tumor immune infiltrate. Gene expression profiles of freshly isolated TIL were also compared with TIL that had been rested overnight or with CD4+ T cells [non-stimulated (NS) or stimulated (S)] from healthy donor PB treated with tumor supernatant (SN).

Publication Title

CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE36768
Effect of human breast tumor supernatant on normal CD4+ T cells (Preliminary Experiment)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

CD4+ helper T (Th) cells are critical regulators of immune responses but their role in breast cancer is currently unknown. This work aims to characterize Th cells infiltrating invasive primary human breast tumors, analyze the influence by the tumor microenvironment and identify Th cell specific prognostic gene signatures. CD4+ T cells isolated from the tumor (TIL), axillary lymph node (LN) and blood (PB) of 10 patients were analyzed on Affymetrix U133 Plus 2.0 arrays. A confirmation set of 60 patients were studied by flow cytometry, qRT-PCR or immunohistochemistry and analyzed according to the extent of the tumor immune infiltrate. Gene expression profiles of freshly isolated TIL were also compared with TIL that had been rested overnight or with CD4+ T cells [non-stimulated (NS) or stimulated (S)] from healthy donor PB treated with tumor supernatant (SN).

Publication Title

CD4⁺ follicular helper T cell infiltration predicts breast cancer survival.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP189490
RNA sequencing of human macrophages treated with iron chelator deferiprone (DEF), with and without lipopolysaccharide (LPS)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In order to identify transcript changes in response to DEF , we used human macrophages with or without DEF treatment. In order to study the effect of iron chelation on LPS-polarized macrophage transcriptome, we exposed DEF-treated or control macrophages to short time exposure to LPS. We then performed whole-genome transcriptome sequencing by RNA-sequencing (RNA-seq). Overall design: Macrophages from 3 healthy donors were either treated with DEF (500 µM - designated as DEF) or left unstimulated (CONTROL). LPS treatment (100 ng/ml, 3 hours) was performed in cells with DEF (designated as LPS+DEF) or without (LPS). RNA-seq was performed on Illumina Hiseq 2500

Publication Title

Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation In Vivo.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE21463
NRG1/ERBB3 signaling in melanocyte Melan-Ink4a cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neuregulin (NRG) signaling through the receptor tyrosine kinase, ERBB3, is required for embryonic development, and dysregulated signaling has been associated with cancer progression. Here, we show that NRG1/ERBB3 signaling inhibits melanocyte (MC) maturation and promotes undifferentiated, migratory and proliferative cellular characteristics. Embryonic analyses demonstrated that initial MC specification and distribution were not dependent on ERBB3 signaling. However NRG1/ERBB3 signaling was both necessary and sufficient to inhibit differentiation of later stages of MC development in culture. Analysis of tissue arrays of human melanoma samples suggests that ERBB3 signaling may also contribute to metastatic progression of melanoma as ERBB3 was phosphorylated in primary tumors compared with nevi or metastatic lesions. Neuregulin 1-treated MCs demonstrated increased proliferation and invasion and altered morphology concomitant with decreased levels of differentiation genes, increased levels of proliferation genes and altered levels of melanoma progression and metastases genes. ERBB3 activation in primary melanomas suggests that NRG1/ERBB3 signaling may contribute to the progression of melanoma from benign nevi to malignancies. We propose that targeting ERBB3 activation and downstream genes identified in this study may provide novel therapeutic interventions for malignant melanoma.

Publication Title

NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38896
Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE38891
Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1 (gene array data)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MicroRNAs (miRNAs) are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNAse III endonuclease encoded by Dicer1, is required for processing short 21-22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO) testes by postnatal day 18 (P18). Compared to wild-type (WT) at 8 weeks, GCKO males had no change in body weight, yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed 96% of miRNA genes were down-regulated and 37% of protein-coding genes were differentially expressed in GCKO testes. Interestingly, we observed preferential overexpression of genes on the sex chromosomes in GCKO testes, with more than 80% of the genes overlapping those proposed to undergo meiotic sex chromosome inactivation (MSCI) in the germ cells. Compared to WT, GCKO mice showed higher percentages of cells at early meiotic stages (leptotene and zygotene) but lower percentages at later stages (pachytene, diplotene and metaphase I), providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Furthermore, we observed fewer elongating spermatids with proper translational activation of transition protein 2 (Tnp2), protamine 1 and 2 (Prm1 and Prm2) in GCKO testes after step 12-14. Therefore, deleting Dicer1 in early postnatal germ cells causes misregulation of transcripts encoded by genes on the sex chromosomes, impairs meiotic progression and post-meiotic translational control and results in spermatogenic failure and infertility.

Publication Title

Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact