refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 414 results
Sort by

Filters

Technology

Platform

accession-icon GSE15271
Expression data from CXCR4pos (centroblast) and CXCR4neg (centrocyte) Human Germinal Center B cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Functional discrimination between normal centroblast and centrocyte obtained from human inflamed tonsils after cell sorting.

Publication Title

CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36975
Expression of Human nave B cell priming for plasma cell differentiation
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

To explore events that govern the differentiation of human nave B cells (NBCs) into memory B cells and plasma cells (PCs), we designed an in vitro 2-step culture model leading non-switched NBC precursors to differentiate into two cell compartments: CD20loCD38hi and CD20+CD38+.

Publication Title

IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE23674
Expression data from human colon cancer cell line HCT116 with NFX1-91 knockdown and control cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

NFX1-91, a novel E6 cellular downstream target, functions as a transcriptional regulator and is involved in repressing hTERT expression. Other functions and downstream targets regulated by NFX1-91 were not well understood. We used microarrays to determine gene expression deregulated when NFX1-91 was knocked down.

Publication Title

NFX1 plays a role in human papillomavirus type 16 E6 activation of NFkappaB activity.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE14347
Knock-out of the nuclear localization in pp65 protein of Cytomegalovirus: biologic and immunologic effects
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The CMVpp65 protein contains 2 bipartite nuclear localization signals (NLS) at 415-438aa and 537-561aa near the carboxy terminus of CMVpp65 and a phosphate binding site related to kinase activity at lysine-436. A mutation of pp65 having K436N (CMVpp65mII) and further deletion of aa537-561 resulted in a novel protein (pp65mIINLSKO) that is kinase-less and has markedly reduced nuclear localization. The purpose of this report was to study the biologic characterization of this protein and its immunogenicity compared to native pp65.Using RNA microarray analysis, expression of the CMVpp65mIINLSKO had less effect on cell cycle pathways than did the native CMVpp65 and a greater effect on cell surface signalling pathways involving immune activity. It is concluded that the removal of the primary NLS motif from pp65 does not impair its immunogenicity and may actually be advantageous in the design of a vaccine.

Publication Title

Biologic and immunologic effects of knockout of human cytomegalovirus pp65 nuclear localization signal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041955
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The use of low quality RNA samples in whole-genome gene expression profiling remains controversial. It is unclear if transcript degradation in low quality RNA samples occurs uniformly, in which case the effects of degradation can be normalized, or whether different transcripts are degraded at different rates, potentially biasing measurements of expression levels. This concern has rendered the use of low quality RNA samples in whole-genome expression profiling problematic. Yet, low quality samples are at times the sole means of addressing specific questions – e.g., samples collected in the course of fieldwork.

Publication Title

RNA-seq: impact of RNA degradation on transcript quantification.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15203
Histone H2B K111A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B K111A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15202
Histone H2B R102A
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Total RNA from three replicate cultures of wild-type and mutant strains was isolated and the expression profiles were determined using Affymetrix arrays. Comparisons between the sample groups allow the identification of genes regulated by histone H2B R102A mutant.

Publication Title

Novel functional residues in the core domain of histone H2B regulate yeast gene expression and silencing and affect the response to DNA damage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE85500
Expression data from nucleus accumbens of rats infused with lentivirus LV-GFP and LV-miR-495 overexpression constructs
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The goal of the study was to determine the effect of lentiviral- mediated overexpression of miR-495 (LV-miR-495) on the levels of gene expression in the nuclues accumbens of rats relative to control rats injected with the empty vector (LV-GFP).

Publication Title

In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87546
Analysis of gene expression in HIV transgenic mice (TG26) with lymphoma in comparison to asymptomatic TG26 mice, and background control (FVBN).Tg26 carries a pNL4-3 HIV-1 provirus lacking part of the gag-pol region, rendering the virus non-infectious.
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

About 15% of the TG26 mice develop lymphoma. HIV protein expression is observed, particularly the protein p17/Matrix. Total cellular RNA from spleen and lymph nodes from 3 groups of animals: FVB/N controls (n=3), Tg26 asymptomatic (n=6), and Tg26 with lymphoma (n=6). Results provide insights into the gene expression program in animals with lymphoma.

Publication Title

Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE57034
BAC-trap studies of Purkinje cells in normal and FMR1 mutant mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The molecular mechanism(s) leading to Purkinje neuron loss in the neurodegenerative disorder Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) are limited by the complex morphology of this cell type. Purkinje neurons are notoriously difficult to isolate and maintain in culture presenting considerable difficultly to identify molecular changes in response to riboCGG repeat-containing mRNA that induces neurotoxicity in FXTAS. Several studies have uncovered a number of RNA binding proteins involved in translation that aberrantly interact with the toxic RNA; however, whether these interactions alter the translational profile of cells has not been investigated. Here we employ bacTRAP translational profiling to demonstrate that Purkinje neurons ectopically expressing 90 CGG repeats exhibit a dramatic change in their translational profile even prior to the onset of riboCGG-induced phenotypes. This approach identified nearly 500 transcripts that are differentially associated with ribosomes in r(CGG)90-expressing mice. Functional annotation cluster analysis revealed broad ontologies enriched in the r(CGG)90 list, including RNA binding and response to stress. Intriguingly, a transcript for the Tardbp gene, implicated in a number of other neurodegenerative disorders, exhibits altered association with ribosomes in the presence of r(CGG)90 repeats. We therefore tested and showed that reduced association of Tardbp mRNA with the ribosomes results in a loss of TDP-43 protein expression in r(CGG)90expressing Purkinje neurons. Furthermore, we showed that TDP-43 could modulate the rCGG repeat-mediated toxicity in a Drosophila model that we developed previously. These findings together suggest translational dysregulation may be an underlying mechanism of riboCGG-induced neurotoxicity and provide insight into the pathogenicity of FXTASBAC-trap studies of Purkinje cels in normal and mutant mice

Publication Title

CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact