refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 63 results
Sort by

Filters

Technology

Platform

accession-icon SRP071702
RNA-seq analysis of control and podoplanin knockdown lymphatic endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

To determine the transcriptome changes after podoplanin was knocked down in human lymphatic endothelial cells Overall design: Human lymphatic endothelial cells were transfected with control siRNA and podoplanin siRNA (N=2 for each group). After 48 hours, total RNA was isolated and processed for RNA-seq.

Publication Title

Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP081207
Protection against maternal infection-associated fetal growth restriction: proof-of-concept with a microbial-derived immunomodulator
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Infection-associated inflammatory stress during pregnancy is the most common cause of fetal growth restriction. Treatment strategies for protection of at-risk mothers are limited. Employing mouse models, we demonstrate that oral treatment during pregnancy with a microbial-derived immunomodulator (OM85), markedly reduces risk for fetal loss/growth restriction resulting from maternal challenge with bacterial LPS or influenza. Focusing on LPS exposure, we demonstrate that the key molecular indices of maternal inflammatory stress (RANTES, MIP-1a, CCL2, KC, G-CSF) in gestational tissues/serum, are abrogated by OM85 pretreatment. Systems-level analyses of RNASeq data revealed that OM85 pretreatment selectively tunes LPS-induced activation in maternal gestational tissues for attenuated expression of TNF-, IL1-, and IFNg- driven proinflammatory networks, without constraining Type1-IFN-associated networks central to first-line anti-microbial defense. This study suggests that broad-spectrum protection-of-pregnancy against infection-associated inflammatory stress, without compromising capacity for efficient pathogen eradication, represents an achievable therapeutic goal. Overall design: Mice were exposed to four treatment conditions (sham control, OM85 pretreatment, LPS challenge, or OM85 pretreatment followed by LPS challenge). Gene expression patterns were profiled in two different tissues (uterus and decidua). There were six animals in each experimental group.

Publication Title

Protection against maternal infection-associated fetal growth restriction: proof-of-concept with a microbial-derived immunomodulator.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE15476
Comparisons between liver tissues and freshly isolated hepatocytes from IkkF/F and IkkDhep (Ikk-deleted) mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

CD74, a Type II membrane glycoprotein and MHC class II chaperone (Ii), is normally expressed by cells associated with the immune system. CD74 also forms heterodimers with CD44 to generate receptors to macrophage migration inhibitory factor (MIF), a proinflammatory cytokine. Following targeted Cre-mediated deletion of Ikk in IkkDeltaHep mice (a strain highly susceptible to chemically-induced hepatotoxicity and hepatocarcinogenesis), CD74 is abundantly expressed by hepatocytes throughout liver acini (as detected by specific Western blots and immunohistochemical stains); it is not observed in either control IkkF/F hepatocytes or embryonic fibroblasts from Ikk-/- mice. Constitutive CD74 expression in IkkDeltaHep hepatocytes is also accompanied by significantly augmented expression of CD44 and genes associated with antigen processing and host defense. These observations suggest that IkkDeltaHep hepatocytes might directly respond to MIF signaling, accounting partly for the enhanced susceptibility of IkkDeltaHep mice to hepatotoxins and hepatocarcinogens, and also might exhibit unusual immunological properties including antigen presentation.

Publication Title

Targeted deletion of hepatocyte Ikkbeta confers growth advantages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2429
Atypical Ductal Hyperplasia
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Fresh Atypical ductal hyperplasia (ADH) tissue collected from breast of a women who either (1) had no prior history of breast cancer and had not developed breast cancer in five years after diagnosis, (2) had cancer before ADH, or had cancer at the time as ADH or developed cancer after ADH diagnosis

Publication Title

Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20165
Expression data from white and brown adipose tissue (WAT and BAT) of per2-/- and control mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We found that the circadian protein PER2 interacts with the nuclear receptor PPARgamma to repress its activity. PPARgamma is a master regulator of adipogenesis and lipid metabolism and is very abundant in adipose tissue. We used microarrays to detail the global program of gene expression in adipose tissue lacking the per2 gene. This analysis identified several PPARgamma target genes up-regulated in adipose tissue from per2-/- mice.

Publication Title

PER2 controls lipid metabolism by direct regulation of PPARγ.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon E-TABM-412
Transcription profiling of mouse prospermatogonia, pachytene oogonia, and gonadal somatic cells from 15 day post-conceptus fetuses and pachytene spermatocytes from adults
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430B Array (moe430b), Affymetrix Mouse Expression 430A Array (moe430a)

Description

RNA expression microarray analysis of prospermatogonia in 15 day post-conceptus (dpc) fetuses, a stage when they are undergoing rapid de novo DNA methylation. For comparison, we also analysed 15 dpc pachytene oogonia, 15 dpc female and male gonadal somatic cells, and adult pachytene spermatocytes.

Publication Title

RNA expression microarray analysis in mouse prospermatogonia: identification of candidate epigenetic modifiers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP059752
The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis (RNA-Seq)
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We used RNA-seq to charatierize a rat chondrosarcoma (RCS) cells as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes and ChIP-seq to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Overall design: RNAs were isolated from three bioogical replicatse of rat chondrosarcoma (RCS) cells and rib samples for RNA-seq experiments.

Publication Title

The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP012289
The post-apoptotic fate of RNAs identified through high-throughput sequencing of human hair
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer II

Description

The hair of all mammals consists of terminally differentiated cells that undergo a specialized form of apoptosis called cornification. While DNA is destroyed during cornification, the extent to which RNA is lost is unknown. Here we find that multiple types of RNA are incompletely degraded after hair shaft formation in both mouse and human. Notably, mRNAs and short regulatory microRNAs (miRNAs) are stable in the hair as far as 10 cm from the scalp. To better characterize the post-apoptotic RNAs that escape degradation in the hair, we performed sequencing (RNA-seq) on RNA isolated from hair shafts pooled from several individuals. This hair shaft RNA library, which encompasses different hair types, genders, and populations, revealed 7,193 mRNAs, 449 miRNAs and thousands of unannotated transcripts that remain in the post-apoptotic hair. A comparison of the hair shaft RNA library to that of viable keratinocytes revealed surprisingly similar patterns of gene coverage and indicates that degradation of RNA is highly inefficient during apoptosis of hair lineages. The generation of a hair shaft RNA library could be used as months of accumulated transcriptional history useful for retrospective detection of disease, drug response and environmental exposure.

Publication Title

The post-apoptotic fate of RNAs identified through high-throughput sequencing of human hair.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77978
Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution and mastitic infection.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The molecular processes underlying human milk production and the effects of mastitic infection are largely unknown because of limitations in obtaining tissue samples. Determination of gene expression in normal lactating women would be a significant step towards understanding why some women display poor lactation outcomes. Here we demonstrate the utility of RNA obtained directly from human milk cells to detect mammary epithelial cell (MEC)-specific gene expression. Milk cell RNA was collected from 5 time points (24 hours pre-partum during the colostrum period, mid lactation, two involution, and during a bout of mastitis) in addition to an involution series comprising three time points. Gene expression profiles were determined by use of human Affymetrix arrays. Milk cells collected during milk production showed that the most highly expressed genes were involved in milk synthesis (eg. CEL, OLAH, FOLR1, BTN1A1, ARG2), while milk cells collected during involution showed a significant down regulation of milk synthesis genes and activation of involution associated genes (eg. STAT3, NF-kB, IRF5, IRF7). Milk cells collected during mastitic infection revealed regulation of a unique set of genes specific to this disease state, whilst maintaining regulation of milk synthesis genes. Use of conventional epithelial cell markers was used to determine the population of MECs within each sample. This paper is the first to describe the milk cell transcriptome across the human lactation cycle and during mastitic infection, providing valuable insight into gene expression of the human mammary gland.

Publication Title

Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution, and mastitic infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5587
tourt-affy-arabi-307860
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Early Growth Response (Egr) family of transcription factors consists of 4 members (Egr1-4) that are expressed in a wide variety of cell types. A large body of evidence point to a role for Egr transcription factors in growth, survival, and differentiation. A major unanswered question is whether Egr transcription factors serve similar functions in diverse cell types by activating a common set of target genes. Signal transduction cascades in neurons and lymphocytes show striking parallels. Activation of either cell type activates the Ras-MAPK pathway and, in parallel, leads to increases in intracellular calcium stimulating the calcineurin-NFAT pathway. In both cell types, the strength of the activation signal affects the cellular outcomes and very strong stimuli lead to cell death. Notably both these pathways converge on the induction of Egr genes. We believe that downstream targets of Egr transcription factors in lymphocytes may also be activated by Egr factors in activated neurons. There is precedence for common target gene activation in these two cell types: apoptosis in both activated T cells and methamphetamine stimulated neurons occurs via FasL induction by NFAT transcription factors. We propose to use developing T lymphocytes (thymocytes) as a model system for discovery of Egr-dependent target genes for several reasons. First, we have observed a prominent survival defect in thymocytes from mice deficient in both Egr1 and Egr3 (1/3 DKO) and a partial differention block in the immature double negative (DN) stage. In addition, thymocytes are an easily manipulatable cell type, and the DN subpopulation affected in 1/3 DKO mice can be isolated to very high purity. We anticipate that 1/3 DKO thymocytes will provide an excellent experimental system that will provide insight into Egr-dependent transcription in neuronal development, activation, and death.

Publication Title

Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact