refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 165 results
Sort by

Filters

Technology

Platform

accession-icon SRP089680
Assessing the impact of loss of ATF7IP and SETDB1 on the transcriptome
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

By comparing HeLa cells lacking ATF7IP or SETDB1 generated through CRISPR/Cas9-mediated gene disruption to wild-type HeLa cells, the goal of the experiment was to determine the effect of loss of the SETDB1•ATF7IP complex on the transcriptome. Overall design: Total RNA-seq of three independent knockout HeLa clones lacking either ATF7IP or SETDB1

Publication Title

ATF7IP-Mediated Stabilization of the Histone Methyltransferase SETDB1 Is Essential for Heterochromatin Formation by the HUSH Complex.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP100172
Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Impaired DNA replication is a hallmark of cancer and a cause of genomic instability. We report that, in addition to causing genetic change, impaired DNA replication during embryonic development can have major epigenetic consequences for a genome. In a genome-wide screen, we identified impaired DNA replication as causing increased expression from a repressed transgene in Caenorhabditis elegans. The acquired expression state behaved as an “epiallele,” being inherited for multiple generations before fully resetting. Derepression was not restricted to the transgene but was caused by a global reduction in heterochromatin-associated histone modifications due to the impaired retention of modified histones on DNA during replication in the early embryo. Impaired DNA replication during development can therefore globally derepress chromatin, creating new intergenerationally inherited epigenetic expression states. Overall design: 3 replicates of div-1 mutant worms and N2 wild type worms

Publication Title

Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33381
The effect of sleep restriction on transcriptome rhythmicity in mice
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Timed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, tissues were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression.

Publication Title

Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon SRP003783
Multimodal RNA-seq using single-strand, double-strand, and circligase-based capture yields a refined and extended description of the C. elegans transcriptome
  • organism-icon Caenorhabditis elegans
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single stranded RNA fragments and one involving circular-template PCR (circligase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of circligase-based and ssRNA-based capture for defining sequences and structures of the precise 5'' ends (which were lost using the double strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the polyA junction. Using datasets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures. Overall design: single-strand-capture, double-strand-capture, and circligase-based RNA-seq

Publication Title

Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15946
Determining lovastatin-induced differences in expression between statin sensitive and insensitive MM cells
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goals of this study were to determine global differences in transcript expression and regulation between MM cells that are sensitive or insensitive to lovastatin-induced apoptosis. To this end, two sensitive (KMS11 and H929) and two insensitive (LP1 and SKMM1) MM cell lines treated with 20uM lovastatin or an ethanol vehicle control for 16 hours. mRNA was extracted and prepared for mRNA expression microarrays (HG-U133 Plus 2) in triplicate.

Publication Title

Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP100835
Assessing the impact of the R252W Charcot-Marie-Tooth disease mutation in MORC2 on HUSH-mediated repression
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

HeLa cells lacking MORC2 generated through CRISPR/Cas9-mediated gene disruption were reconstituted with either wild-type or R252W mutant MORC2, and re-repression of HUSH target genes assessed by RNA-seq Overall design: Total RNA-seq of MORC2 knockout cells, either 1) mock transduced, 2) transduced with lentiviral vector encoding wild-type MORC2 or 3) transduced with lentviral vector encoding R252W MORC2.

Publication Title

Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP068773
EPCR Expression Defines the Most Primitive Subset of Human HSPC and Is Required for Their In Vivo Activity
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Cell purification technology combined with whole transcriptome sequencing and small molecule agonist of hematopoietic stem cell self-renewal has allowed us to identify the endothelial protein c receptor protein (EPCR) as a surface maker that defines a rare subpopulation of human cells which is highly enriched for stem cell activity in vivo. EPCR-positive cells exhibit a robust multi-lineage differentiation potential and serial reconstitution in immunocompromised mice. In culture, most if not all of the HSC activity is detected in the EPCR+ subset, arguing for the stability of this marker on the surface of cultured cells, a feature not found with more recently described markers such as CD49f. Functionally EPCR is essential for human HSC activity in vivo. Cells engineered to express low EPCR expression proliferate normally in culture but lack the ability to confer long-term reconstitution. EPCR is thus a stable marker for human HSC. Its exploitation should open new possibilities in our effort to understand the molecular bases behind HSC self-renewal. Overall design: Examining 3 cellular subsets: EPCR+, EPCRlow, EPCR- derived form CD34+CD45RA- cord blood cells after 7 day expansion in UM171

Publication Title

EPCR expression marks UM171-expanded CD34<sup>+</sup> cord blood stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041885
RNA expression profiling of human mPB or CB-derived CD34+ cells treated with UM171 at different doses
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNASeq data for mPB or CB-derived CD34+ exposed to UM171 Overall design: human mobilized peripheral blood or cord blood-derived CD34(+) cells were cultured for 16 hours with vehicle (DMSO), dose response of UM171 [11.9nM, 19nM, 30.5nM, 48.8nM, 78.1nM and 125nM], SR1 [500nM] and combination of( UM171 [48.8nM]+SR1 [500nM])

Publication Title

UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12507
Genome-wide expression analysis of a human pDC cell line
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)

Publication Title

Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53894
G9a-dependent gene expression in mouse AML cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The methyltransferase G9a was found to play a role in the disease progression of a murine model of AML.

Publication Title

The methyltransferase G9a regulates HoxA9-dependent transcription in AML.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact