refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 244 results
Sort by

Filters

Technology

Platform

accession-icon GSE90471
Comparison of R1, R2 and R3
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

3 samples of R1, R2 and R3 bone marrow monocytes were compared from 3 biological replicates in 3 separate experiments.

Publication Title

The Heterogeneity of Ly6C<sup>hi</sup> Monocytes Controls Their Differentiation into iNOS<sup>+</sup> Macrophages or Monocyte-Derived Dendritic Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033135
Pseudo-temporal ordering of individual cells reveals regulators of differentiation
  • organism-icon Homo sapiens
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Single-cell expression profiling by RNA-Seq promises to exploit cell-to-cell variation in gene expression to reveal regulatory circuitry governing cell differentiation and other biological processes. Here, we describe Monocle, a novel unsupervised algorithm for ordering cells by progress through differentiation that dramatically increases temporal resolution of expression measurements. This reordering unmasks switch-like changes in expression of key regulatory factors, reveals sequentially organized waves of gene regulation, and exposes regulators of cell differentiation. A functional screen confirms that a number of these regulators dramatically alter the efficiency of myoblast differentiation, demonstrating that single-cell expression analysis with Monocle can uncover new regulators even in well-studied systems. Overall design: We selected primary human myoblasts as a model system of cell differentiation to investigate whether ordering cells by progress revealed new regulators of the process. We sequenced RNA-Seq libraries from each of several hundred cells taken over a time-course of serum-induced differentiation. Please note that this dataset is a single-cell RNA-Seq data set, and each cell comes from a capture plate. Thus, each well of the plate was scored and flagged with several QC criteria prior to library construction, which are provided as sample characteristics; CONTROL indicates that this library is a off-chip tube control library constructed from RNA of approximately 250 cells and ''DEBRIS'' indicates that the well contained visible debris (and may or may not include a cell). Libraries marked DEBRIS thus cannot be confirmed to come from a single cell.

Publication Title

The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76293
Neutrophils from ARDS patients and healthy volunteers, and healthy volunteer samples treated with PI3K inhibitors
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rationale: The acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this diseases complex pathophysiology, yet these cells have been little studied.

Publication Title

Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Time

View Samples
accession-icon SRP135973
Human iPSC-derived glomeruli provide an advanced model to interrogate podocyte biology and accurately recapitulate podocytopathy
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Podocytes are highly specialised cells within the glomeruli of the kidney that maintain the filtration barrier by forming interdigitating foot processes and slit-diaphragms. Disruption to these features result in proteinuria and glomerulosclerosis. Studies into podocyte biology and disease have previously relied on conditionally immortalised cell lines due to the non- proliferative nature of this cell type. Here we describe an advanced model to study both podocyte and glomerular biology using isolated glomeruli from kidney organoids derived from human pluripotent stem cells. Overall design: Gene expression profiling of day three 17, 21 and 26 day kidney organoid derived glomeruli respectively with heterzygous genotype for BFP tagged MAFB; gene expression profiling of three day 25 kidney organoid derived glomeruli; gene expression profiling of three organoid-derived podocytes grown out for 3 days from day 25 kidney organoid derived glomeruli.

Publication Title

3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE36701
Gene expression analysis of rectal mucosa in chronic irritable bowel syndrome (IBS) compared to healthy volunteers (HV)
  • organism-icon Homo sapiens
  • sample-icon 220 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An investigation of gene expression changes in rectal biopsies from donors with IBS compared to controls to begin to understand this complex syndrome. To further investigate differences between IBS groups (constipation and diarrhoea predominant) (part1) and how IBS relates to bacterial infection (part2) with biopsies taken 6 months after Campylobacter jejuni infection.

Publication Title

Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE39073
Expression data from a reversible dasatinib-resistant state in long-term dasatinib-treated c-KIT-mutated Kasumi-1 cell line
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Long-term treatment of Kasumi-1 cells at clinically attained doses of dasatinib led to decreased drug-sensitivity by means of IC50 values (relative to treatment-naive cells). Changes were paralled by profound alterations in c-KIT expression and cell signaling signatures. Upon brief discontinuation of dasatinib treatment, these alterations reversed and drug sensitivity was restored.

Publication Title

Transitory dasatinib-resistant states in KIT(mut) t(8;21) acute myeloid leukemia cells correlate with altered KIT expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51686
Fracture healing in osteoporotic mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genome-wide comparative gene expression analysis of callus tissue of osteoporotic mice (Col1a1-Krm2 and Lrp5-/-) and wild-type were performed to identify candidate genes that might be responsible for the impaired fracture healing observed in Col1a1-Krm2 and Lrp5-/- mice.

Publication Title

Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17612
Comparison of post-mortem tissue from brain BA10 region between schizophrenic and control patients.
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function.

Publication Title

Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE21935
Comparison of post-mortem tissue from Brodman Brain BA22 region between schizophrenic and control patients
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional analysis of the superior temporal cortex (BA22) in schizophrenia: Pathway insight into disease pathology and drug development

Publication Title

Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE42946
Adult mucous neck cells from corpus gastric epithelium
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In this experiment, mucous neck cells from the gastric epithelium of normal, adult C57/B6 mice were laser-capture microdissected to determine gene expression in neck cells relative to pit cells, parietal cells, and zymogenic cells, whose expression profiles were previously deposited in GEO.

Publication Title

Evolution of the human gastrokine locus and confounding factors regarding the pseudogenicity of GKN3.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact