refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon GSE22010
TMPRSS2:ERG promotes invasiveness and epithelial to mesenchymal transition in prostate cancer model
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Recently, a frequent chromosomal aberration fusing Androgen regulated TMPRSS2 promoter and the ERG gene (T/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between the T/ERG and other defective pathways in cancer progression however, the biological mechanism by which the T/ERG operates is yet to be determined. Using immortalized prostate epithelial cells (EP) model we were able to show that EP with the combination of androgen receptor(AR) and T/ERG(EP-AR T/ERG cell line) demonstrate an Epithelial to Mesenchymal Transition (EMT) manifested by a mesenchyme-like morphological appearance and behavior.

Publication Title

TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP015725
Differences in miRNA Detection Levels are Technology and Sequence Dependent [NGS]
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We undertook an integrative technological approach to compare miRNA detection capability of three high-throughput commercial platforms. Overall design: We artificially introduced human precursor, 2’-O-methyl modified and mature spiked-in miRNAs in a controlled fashion into native human placenta total RNA.

Publication Title

Differences in microRNA detection levels are technology and sequence dependent.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP059880
RNA-seq of cytosolic and chromatin-associated transcripts following TNFa and Spt5 KD
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We examined the effects of TNFa and Spt5, the major DSIF subunit, on nascent and mature transcripts using RNA-Seq of chromatin-associated and cytoplasmic transcripts. Overall design: RNA was extracted from the cytosolic and chromatin fractions of control and Spt5 KD cells that were treated with TNFa for 1 hour

Publication Title

Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50131
The transcription program of Runx3 in natural killer cells and CD8+ T cells
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE50122
Runx3 function in splenic NK cells (IL-2 or IL-15)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE50123
Runx3 function in splenic NK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NK cells are innate immune cells that recognize and kill foreign, virally-infected and tumor cells without the need for prior immunization. NK expansion following viral infection is IL-2 or IL-15-dependent.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50119
Runx3 function in CD8+ splenic T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD8+T cells are immune cells that recognize foreign antigens on infected and tumor cells, leading to cytokine-dependent expansion and activation of cytotoxicity towards the targets.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE50121
Runx3 function in IL-2-activated splenic CD8+ T cells.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD8+T cells are immune cells that recognize foreign antigens on infected and tumor cells, leading to cytokine-dependent expansion and activation of cytotoxicity towards the targets.

Publication Title

Runx3-mediated transcriptional program in cytotoxic lymphocytes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP031843
Sub-Cellular Transcriptomics – Dissection of the mRNA composition in the axonal compartment of sensory neurons
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

RNA localization is a regulatory mechanism that is conserved from bacteria to mammals. Yet, little is known about the mechanism and the logic that govern the distribution of RNA transcripts within the cell. Here we present a novel organ culture system, which enables the isolation of RNA specifically from NGF dependent re-growing peripheral axons of mouse embryo sensory neurons. In combination with massive parallel sequencing technology, we determine the sub-cellular localization of most transcripts in the transcriptome. We found that the axon is enriched in mRNAs that encode secreted proteins, transcription factors and the translation machinery. In contrast, the axon was largely depleted from mRNAs encoding transmembrane proteins, a particularly interesting finding, since many of these gene products are specifically expressed in the tip of the axon at the protein level. Comparison of the mitochondrial mRNAs encoded in the nucleus with those encoded in the mitochondria, uncovered completely different localization pattern, with the latter much enriched in the axon fraction. This discovery is intriguing since the protein products encoded by the nuclear and mitochondrial genome form large co-complexes. Finally, focusing on alternative splice variants that are specific to axonal fractions, we find short sequence motifs that are enriched in the axonal transcriptome. Together our findings shed light on the extensive role of RNA localization and its characteristics. Overall design: For each RNA sample, Spinal Cords\ DRGs were dissected from 40 E13.5 embryos and cultured for 48H. Total RNA was extracted from whole DRG and Peripheral axons. Poly-A enriched. In duplicates, using GAIIx. Read length - 80nt.

Publication Title

Subcellular transcriptomics-dissection of the mRNA composition in the axonal compartment of sensory neurons.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52625
Runx3 Regulates Interleukin-15-Dependent Natural Killer Cell Activation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact