refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 196 results
Sort by

Filters

Technology

Platform

accession-icon GSE67229
Topaz1, a germ cell specific factor essential for male meiotic progression.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Testicular gene expression changes with loss of Topaz1

Publication Title

TOPAZ1, a germ cell specific factor, is essential for male meiotic progression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44118
Expression Data from Endothelial Cells as a Consequence of Ets2 Signaling in PyMT Tumor Associated Fibroblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tumor associated fibroblasts are known to play an important role in angiogenesis, however the specific signaling pathways playing an important role in this cross talk remain ill defined. Here, we studied how Ets2 transcrpiton factor signaling in tumor associated fibroblasts effected gene expression in surrounding endothelial cells in the MMTV-PyMT mammary tumor model.

Publication Title

Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44166
Expression Data from Normal or ErbB2 Tumor Fibroblasts With or Without Ets2
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mechanisms involved in epithelium-stroma interactions remain poorly understood, despite the importance of the microenvironment during tumorigenesis. Here, we studied the role of Ets2 transcrpiton factor in tumor associated fibroblasts in the MMTV-ErbB2 mammary tumor model. Inactivation of Ets2 specifically in fibroblasts using Fsp-cre significantly reduced tumor growth, in contrast to Ets2 inactivation in epithelium in which no differences in tumor growth were observed.

Publication Title

Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16989
Expression Data from Normal or Tumor Fibroblasts With or Without Ets2
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The mechanisms involved in epithelium-stroma interactions remain poorly understood, despite the importance of the microenvironment during tumorigenesis. Here, we studied the role of the Ets2 transcription factor in tumor-associated fibroblasts in the MMTV-PyMT mammary tumor model. Inactivation of Ets2 specifically in fibroblasts using Fsp-cre significantly reduced tumor growth, in contrast to Ets2 inactivation in epithelium, in which no differences in tumor growth were observed.

Publication Title

Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE58644
The prognostic ease and difficulty of invasive breast carcinoma
  • organism-icon Homo sapiens
  • sample-icon 319 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Breast carcinoma (BC) have been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The shear number of reported signatures has led to speculation that everything is prognostic in BC. Here we show that this ubiquity is an apparition caused by a poor understanding of the inter- relatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers, but who experience a distant metastasis within five years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intra-tumoral heterogeneity.

Publication Title

The prognostic ease and difficulty of invasive breast carcinoma.

Sample Metadata Fields

Age, Disease stage, Time

View Samples
accession-icon SRP158524
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation I
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile of A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs) Overall design: A673 parental and SP-2509 Drug resistant cells treated with DMSO and SP-2509 (2uM 48hrs)

Publication Title

Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP158525
Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation II
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The transcriptional profile of A673 parental, and SP-2509 drug resistant washout cells (4 and 6 months) Overall design: Following generation of A673 SP-2509 drug resistant cells (chronic exposure for 7 months), drug was withdrawn with cell pellets collected 4 and 6 months after removal.

Publication Title

Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon SRP151684
The effect of cellular context on miR-155 mediated gene regulation in four major immune cell types (PolyA-Seq)
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Numerous microRNAs and their target mRNAs are co-expressed across diverse cell types. However, it is unknown whether they are regulated in a cellular context-independent or -dependent manner. Here, we explored transcriptome-wide targeting and gene regulation by miR-155, whose activation-induced expression plays important roles in innate and adaptive immunity. Through mapping of miR-155 targets using differential Argonaute iCLIP, mRNA quantification with RNA-Seq, and 3'UTR usage analysis using polyadenylation (polyA)-Seq in activated miR-155-sufficient and deficient macrophages, dendritic cells, T and B lymphocytes, we identified numerous targets differentially bound by miR-155. While alternative cleavage and polyadenylation (ApA) contributed to differential miR-155 binding to some transcripts, in a majority of cases identical 3'UTR isoforms were differentially regulated across cell types, suggesting ApA-independent and cellular context-dependent miR-155-mediated gene regulation reminiscent of sequence-specific transcription factors. Our study provides comprehensive maps of miR-155 regulatory RNA networks and offers a valuable resource for dissecting context-dependent and -independent miRNA-mediated gene regulation in key cell types of the adaptive and innate immune systems. Overall design: Primary dendritic cells, B cells, CD4 T cells, and macrophages from C57BL/6J wild type and miR-155 KO mice were cultured in RPMI medium with 10% FBS. Prior to harvesting primary dendritic cells, mice were subcutaneously injected with one million B16 melanoma cells expressing Flt3 ligand for about two weeks. After purification of splenic CD11c+ dendritic cells by CD11c microbeads (Miltenyi Biotec), dendritic cells were activated in a medium containing 100 ng/ml LPS (SIGMA) and 20 ng/ml GMSCF (Tonbo). Splenic primary B cells were purified by negative selection using Dynabeads Mouse CD43 (Invitrogen), and activated in a medium containing 25 ug/ml LPS and 6.5 ng/ml mIL4 (PeproTech). CD4 T cells from lymph node and spleen were purified with Dynabeads FlowComp Kit (Invitrogen). CD4+CD25-CD44- T cells were then activated with Dynabeads Mouse T-Activator CD3/CD28 (Invitrogen). Intraperitoneal macrophages, induced by thioglycollate injection, were harvested and activated with 100 ng/ml LPS.

Publication Title

The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP151472
The effect of cellular context on miR-155 mediated gene regulation in four major immune cell types (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Numerous microRNAs and their target mRNAs are co-expressed across diverse cell types. However, it is unknown whether they are regulated in a cellular context-independent or -dependent manner. Here, we explored transcriptome-wide targeting and gene regulation by miR-155, whose activation-induced expression plays important roles in innate and adaptive immunity. Through mapping of miR-155 targets using differential Argonaute iCLIP, mRNA quantification with RNA-Seq, and 3'UTR usage analysis using polyadenylation (polyA)-Seq in activated miR-155-sufficient and deficient macrophages, dendritic cells, T and B lymphocytes, we identified numerous targets differentially bound by miR-155. While alternative cleavage and polyadenylation (ApA) contributed to differential miR-155 binding to some transcripts, in a majority of cases identical 3'UTR isoforms were differentially regulated across cell types, suggesting ApA-independent and cellular context-dependent miR-155-mediated gene regulation reminiscent of sequence-specific transcription factors. Our study provides comprehensive maps of miR-155 regulatory RNA networks and offers a valuable resource for dissecting context-dependent and -independent miRNA-mediated gene regulation in key cell types of the adaptive and innate immune systems. Overall design: Primary dendritic cells, B cells, CD4 T cells, and macrophages from C57BL/6J wild type and miR-155 KO mice were cultured in RPMI medium with 10% FBS. Prior to harvesting primary dendritic cells, mice were subcutaneously injected with one million B16 melanoma cells expressing Flt3 ligand for about two weeks. After purification of splenic CD11c+ dendritic cells by CD11c microbeads (Miltenyi Biotec), dendritic cells were activated in a medium containing 100 ng/ml LPS (SIGMA) and 20 ng/ml GMSCF (Tonbo). Splenic primary B cells were purified by negative selection using Dynabeads Mouse CD43 (Invitrogen), and activated in a medium containing 25 ug/ml LPS and 6.5 ng/ml mIL4 (PeproTech). CD4 T cells from lymph node and spleen were purified with Dynabeads FlowComp Kit (Invitrogen). CD4+CD25-CD44- T cells were then activated with Dynabeads Mouse T-Activator CD3/CD28 (Invitrogen). Intraperitoneal macrophages, induced by thioglycollate injection, were harvested and activated with 100 ng/ml LPS. Each condition has 3 sequencing replicates.

Publication Title

The effect of cellular context on miR-155-mediated gene regulation in four major immune cell types.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE2116
SHR-WKY
  • organism-icon Rattus norvegicus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Left ventricular gene expression profiles from 12-, 16- and 20-months old spontaneously hypertensive rats (SHRs) were compared with left ventricular profiles seen in age-matched Wistar-Kyoto (WKY) rats by screening Affymetrix U34A arrays (there are 4 samples in each timepoint except 3 samples of 20-months old WKYs).

Publication Title

Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact