refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 377 results
Sort by

Filters

Technology

Platform

accession-icon GSE16420
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense
  • organism-icon Populus tremula x populus alba
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16417
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-overexpressor
  • organism-icon Populus tremula x populus alba
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

To investigate the function of poplar WRKY23, we generated PtWRKY23-overexpressing and -underexpressing (RNAi) plants. Transgenic plants were inoculated with Melampsora rust or mock-inoculated for assessment of rust-resistance and for gene expression profiling using the poplar Affymetrix GeneChip to study the consequences of PtWRKY23 overexpression and underexpression. Transcriptome analysis of PtWRKY23 overexpressors revealed a significant overlap with the Melampsora-infection response. Transcriptome analysis also indicated that PtWRKY23 affects redox homeostasis and cell wall-related metabolism.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16419
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-RNAi
  • organism-icon Populus tremula x populus alba
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

To investigate the function of poplar WRKY23, we generated PtWRKY23-overexpressing and -underexpressing (RNAi) plants. Transgenic plants were inoculated with Melampsora rust or mock-inoculated for assessment of rust-resistance and for gene expression profiling using the poplar Affymetrix GeneChip to study the consequences of PtWRKY23 overexpression and underexpression. Transcriptome analysis of PtWRKY23 overexpressors revealed a significant overlap with the Melampsora-infection response. Transcriptome analysis also indicated that PtWRKY23 affects redox homeostasis and cell wall-related metabolism.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21511
EWS-FLI1 reactivates a neural crest stem cell program in human neural crest-derived mesenchymal stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Ewing sarcoma family of tumors (ESFT) are aggressive bone and soft tissue tumors of unknown cellular origin. Most ESFT express EWS-FLI1, a chimeric protein which functions as a growth-promoting oncogene in ESFT but is toxic to most normal cells. A major difficulty in understanding EWS-FLI1 function has been the lack of an adequate model in which to study EWS-FLI1-induced transformation. Although the cell of origin of ESFT remains elusive, both mesenchymal (MSC) and neural crest (NCSC) have been implicated. We recently developed the tools to generate NCSC from human embryonic stem cells (hNCSC). In the current study we used this model to test the hypothesis that neural crest-derived stem cells are the cells of origin of ESFT and to evaluate the consequences of EWS-FLI1 expression on human neural crest biology.

Publication Title

Modeling initiation of Ewing sarcoma in human neural crest cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45593
GENOMICS TO IDENTIFY HLA IDENTICAL RENAL TRANSPLANT TOLERANCE SIGNATURES
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunosuppression is needed in HLA identical sibling renal transplantation. We conducted a tolerance trial in this patient cohort using Alemtuzumab induction, donor hematopoietic stem cells, tacrolimus/mycophenolate immunosuppression converted to sirolimus, planning complete drug withdrawal by 24 months post-transplantation. After an additional 12 months with no immunosuppression, normal biopsies and renal function, recipients were considered tolerant. Twenty recipients were enrolled. Of the first 10 (>36 months post-transplantation), 5 had immunosuppression successfully withdrawn for 16-36 months (tolerant), 2 had disease recurrence and 3 had subclinical rejection in protocol biopsies (non-tolerant). Microchimerism disappeared after 1 year, and CD4+CD25highCD127-FOXP3+ T cells and CD19+IgD/M+CD27- B cells increased to 5 years post-transplantation in both groups, whereas immune/inflammatory gene expression pathways in the peripheral blood and urine were differentially downregulated in tolerant compared to non-tolerant recipients. Therefore, in this HLA identical renal transplant tolerance trial, absent chimerism, Treg and Breg immunophenotypes were indistinguishable between tolerant and non-tolerant recipients, but global genomic changes indicating immunomodulation were observed only in tolerant recipients.

Publication Title

Genomic biomarkers correlate with HLA-identical renal transplant tolerance.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP192549
Single-cell transcriptomic profiling of the aging mouse brain
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. Overall design: Total of 16 mice brains with raw data for 50,212 single cells and processed data for 37,089 single cells

Publication Title

Single-cell transcriptomic profiling of the aging mouse brain.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE23417
Differential expression of E.coli mar/rob/soxS triple mutant and wild type in a mouse model of pyelonephritis
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Mutation of marA, rob, and soxS causes a clinical strain of E.coli to be attenuated at d3 post-infection in a mouse model of pyelonephritis, here we extract RNA at d2 post infection to analyze transcriptional differences between the two strains.

Publication Title

SoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35240
Gene expression in mitotic tissues of Drosophila larvae without centrosomes or too many centrosomes
  • organism-icon Drosophila melanogaster
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Centrosome defects are a common feature of many cancers. Surprisingly, flies can proceed through the majority of development without centrosomes or with amplified centrosomes in most of their cells. It is unclear whether this is because centrosome defects do not cause many problems in Drosophila cells, or because they can adapt to cope with any problems that arise. Indeed, centrosome loss and centrosome amplification predispose fly brain cells to form tumours. Here we assess how centrosome loss or centrosome amplification perturbs cell physiology by profiling the global transcriptome of Drosophila larval brains and imaginal discs that either lack centrosomes or have too many centrosomes.

Publication Title

Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP185924
RNA-seq using the Cel-Seq2 method, of wild type and 35-polyglutamine (polyQ35) expressing C. elegans worms treated with RNAi toward anc-1, or left untreated (EV) gene expression profiles.
  • organism-icon Caenorhabditis elegans
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: We observed protein homeostasis modulations when anc-1 is knocked-down. We wanted to measure changes in gene expression profiles following this manipulation. Methods: We treated wild type (strain N2) or polyQ35-YFP (strain AM140) nematodes, which express toxic aggregative proteins that challenge their protein homeostasis, with anc-1 RNAi until day six of adulthood, and compared their gene expression levels to those of untreated worms. Results: The knockdown of anc-1 leads to modified expression levels of hundreds of genes. There is an enrichment of transcription factors and protein homeostasis modulators, such as E3 ubiquitin ligases. Conclusions: anc-1 regulates protection from toxic aggregative proteins, at least partially, by regulating the expression of genes that encode protein homeostasis factors. Overall design: Wild type strain, three repeats; polyQ35-YFP strain, four repeats. Each repeat has two conditions: untreated (EV), and RNAi toward anc-1.

Publication Title

Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE14429
Alteration of gene expression profile in HEK293 cells treated with proteasome inhibitor epoxomicin
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The objective of this study is to identify the genes that are up-regulated amid proteasome dysfunction to facilitate the discovery of proteolytic pathways that are activated as a compensatory response to proteasome inhibition. Proteasome is a large multi-component proteolytic complex in the cell. It is responsible for the constitutive turn-over of many cellular proteins as well as the degradation of oxidized and/or unfolded proteins. With such a fundamental role in the cell, disruption of proteasome understandably can lead to disastrous outcome. Oxidative stress has been postulated as the driving mechanism for aging. Oxidatively modified proteins, which usually have lost their activity, require immediate removal by proteasome to maintain normal cellular function. Dysfunction of proteasome has also been linked to neuro-degenerative diseases such as Alzheimers and Parkinsons diseases, those that are most commonly seen in aged population. There is more than one proteolytic pathway in the cell, and it has been reported that obstruction of any one of these pathways may enhance the activity of the others. Proteasomal function has been found to have decreased during aging, prompting researchers to hypothesize that failure to remove oxidized proteins may play an important role in aging. It would be interesting to determine the other proteolytic pathways that are activated after proteasome inhibition by a relatively specific inhibitor epoxomicin to help understand their roles in aging processes.

Publication Title

Iron regulatory protein 2 turnover through a nonproteasomal pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact