refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 64 results
Sort by

Filters

Technology

Platform

accession-icon SRP149148
Single-cell RNA-seq of spiral ganglion neurons from wildtype and Vglut3-/- mice
  • organism-icon Mus musculus
  • sample-icon 226 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Molecular heterogeneity among spiral ganglion neurons (SGNs) in the mouse cochlea was investigated in two genetic backgrounds: 1) wildtype, 2) Vglut3-/-, which lack inner hair cell-driven glutamatergic activation of SGNs. Overall design: Individual spiral-ganglion neurons expressing the fluorescent reporter tdTomato were dissociated and manually placed into PCR tubes; single-cell libraries were made by the Smart-seq2 approach; sequencing was done using the NextSeq platform (Illumina) at an average read depth of 4.5 million; bioinformatic analysis was conducted in R. Genotypes: bhlhb5::cre/+; Ai14/+ (wildtype) and bhlhb5::cre/+;Ai14/+; Vglut3-/- (Vglut3-/-). Age: P25-P27

Publication Title

Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE6998
Expression profiling of developmental and regenerating liver in mice
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Normal adult liver is uniquely capable of renewal

Publication Title

Restoration of liver mass after injury requires proliferative and not embryonic transcriptional patterns.

Sample Metadata Fields

Age

View Samples
accession-icon GSE54709
Expression data from 786-O renal cell cancer cells treated with pentamidine
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

While early stages of clear cell renal cell carcinoma (ccRCC) are curable, survival outcome for metastatic ccRCC remains poor. The purpose of the current study was to apply a new individualized bioinformatics analysis (IBA) strategy to these transcriptome data in conjunction with Gene Set Enrichment Analysis of the Connectivity Map (C-MAP) database to identify and reposition FDA-approved drugs for anti-cancer therapy. We demonstrated that one of the drugs predicted to revert the RCC gene signature towards normal kidney, pentamidine, is effective against RCC cells in culture and in a RCC xenograft model. Most importantly, pentamidine slows tumor growth in the 786-O human ccRCC xenograft mouse model. To determine which genes are regulated by pentamidine in a human RCC cell line, 786-O, we treated these cells with pentamidine and performed transcriptional profiling analysis.

Publication Title

Computational repositioning and preclinical validation of pentamidine for renal cell cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE31245
Unique gene expression profile based upon pathologic response in epithelial ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

PURPOSE:

Publication Title

Unique gene expression profile based on pathologic response in epithelial ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13525
Carboplatin-induced gene expression changes in vitro are prognostic of survival in epithelial ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We performed a time-course microarray experiment to define the transcriptional response to carboplatin in vitro, and to correlate this with clinical outcome in epithelial ovarian cancer (EOC). RNA was isolated from carboplatin and control-treated 36M2 ovarian cancer cells at several time points, followed by oligonucleotide microarray hybridization. Carboplatin induced changes in gene expression were assessed at the single gene as well as at the pathway level. Clinical validation was performed in publicly available microarray datasets using disease free and overall survival endpoints.

Publication Title

Carboplatin-induced gene expression changes in vitro are prognostic of survival in epithelial ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10041
Genomic Counter-Stress Changes Induced by Mind-Body Practice
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mind-body practices that elicit the relaxation response (RR) have been used worldwide for millennia to prevent and treat disease. The RR is believed to be the counterpart to stress response and is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. Individuals experiencing chronic psychological stress have the opposite pattern of physiology and a characteristic transcriptional profile. We hypothesized that consistent, long-term practice of RR techniques results in characteristic changes in gene expression. We tested this hypothesis by assessing the transcriptional profile of whole blood in healthy, long-term practitioners of daily RR practice (group M) in comparison to healthy controls (group N1). The signature obtained has been validated on new subject data.

Publication Title

Genomic counter-stress changes induced by the relaxation response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55945
Gene Expression Profiling of Prostate Benign and Malignant Tissue
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We profiled genome-wide gene expression of human prostate benign and malignant tissue to identify potential biomarkers and immunotherapy targets.

Publication Title

Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20299
Expression profiling of Stomach and Colon of Spdef Knockout mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Gene expression profiling on stomach and colon tissue from Spdef knockout, heterozygous and wild type mice.

Publication Title

Requirement of the epithelium-specific Ets transcription factor Spdef for mucous gland cell function in the gastric antrum.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15641
Gene signatures of progression and metastasis in renal cell cancer
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In order to address the progression, metastasis, and clinical heterogeneity of renal cell cancer (RCC), transcriptional profiling with oligonucleotide microarrays (22,283 genes) was done on 49 RCC tumors, 20 non-RCC renal tumors, and 23 normal kidney samples. Samples were clustered based on gene expression profiles and specific gene sets for each renal tumor type were identified. Gene expression was correlated to disease progression and a metastasis gene signature was derived. Gene signatures were identified for each tumor type with 100% accuracy. Differentially expressed genes during early tumor formation and tumor progression to metastatic RCC were found. Subsets of these genes code for secreted proteins and membrane receptors and are both potential therapeutic or diagnostic targets. A gene pattern ("metastatic signature") derived from primary tumors was very accurate in classifying tumors with and without metastases at the time of surgery. A previously described "global" metastatic signature derived by another group from various non-RCC tumors was validated in RCC. Unlike previous studies, we describe highly accurate and externally validated gene signatures for RCC subtypes and other renal tumors. Interestingly, the gene expression of primary tumors provides us information about the metastatic status in the respective patients and has the potential, if prospectively validated, to enrich the armamentarium of diagnostic tests in RCC. We validated in RCC, for the first time, a previously described metastatic signature and further showed the feasibility of applying a gene signature across different microarray platforms. Transcriptional profiling allows a better appreciation of the molecular and clinical heterogeneity in RCC.

Publication Title

Gene signatures of progression and metastasis in renal cell cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71212
Expression data from Jurkat cells treated with SB225002 for 6h and 9h.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

In our efforts to evaluate the function of the IL-8 receptor CXCR2 in Acute Lymphoblastic Leukemia (ALL) cells, we made use of SB225002 (N-(2-hydroxy-4-nitrophenyl)-N-(2-bromophenyl)urea), a drug initially described as a CXCR2 antagonist. Although the CXCR2 receptor was found to be non-functional in ALL, B- and T-ALL cell lines were sensitive to SB225002.

Publication Title

SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact