refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon GSE34388
Transcriptional Alterations in Skeletal Muscle Following Desmin Deletion
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Desmin is a cytoskeletal protein in muscle involved in integrating cellular space and transmitting forces. In this study we sought to determine the effects of desmin deletion on skeletal muscle at the transcriptional level across many pathways of muscle physiology.

Publication Title

Skeletal muscle fibrosis develops in response to desmin deletion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19664
Expression difference between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The recruitment of mesenchymal stem cells in order to reconstruct damaged cartilage of osteoarthritis joints is a challenging tissue engineering task. Vision towards this goal is blurred by a lack of knowledge about the underlying differences between chondrocytes and MSC during the chondrogenic cultivation process. The aim of this study was to shed light on the differences between chondrocytes and MSC occurring during chondral differentiation through tissue engineering.

Publication Title

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41363
Role of the Cytoskeleton in muscle transcriptional response to altered use
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Desmin is a cytoskeletal protein in muscle involved in integrating cellular space and transmitting forces. In this study we sought to determine the combinatory effects of desmin deletion, aging and eccentric exercise on skeletal muscle at the transcriptional level across many pathways of muscle physiology.

Publication Title

Role of the cytoskeleton in muscle transcriptional responses to altered use.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE31243
Transcriptional Alterations of Hamstring Muscle Contractures in Children with Cerebral Palsy
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Cerebral palsy is primarily an upper motor neuron disease that results in a spectrum of progressive movement disorders. Secondary to the neurological lesion, muscles from patients with cerebral palsy are often spastic and form debilitating contractures that limit range of motion and joint function. With no genetic component, the pathology of skeletal muscle in cerebral palsy is a response to aberrant neurological input in ways that are not fully understood. This study was designed to gain further understanding of the skeletal muscle response to cerebral palsy using microarrays and correlating the transcriptional data with functional measures. Hamstring biopsies from gracilis and semitendinosus muscles were obtained from a cohort of patients with cerebral palsy (n=10) and typically developing patients (n=10) undergoing surgery. Affymetrix HG-U133A 2.0 chips (n=40) were used and expression data was verified for 6 transcripts using quantitative real-time PCR, as well as for two genes not on the microarray. Chips were clustered based on their expression and those from patients with cerebral palsy clustered separately. Significant genes were determined conservatively based on the overlap of three summarization algorithms (n=1,398). Significantly altered genes were analyzed for over-representation among gene ontologies, transcription factors, pathways, microRNA and muscle specific networks. These results centered on an increase in extracellular matrix expression in cerebral palsy as well as a decrease in metabolism and ubiquitin ligase activity. The increase in extracellular matrix products was correlated with mechanical measures demonstrating the importance in disability. These data lay a framework for further studies and novel therapies.

Publication Title

Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE17906
Gene expression down-regulation in prostate tumor-associated stromal cells involves organ-specific genes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. Isolation and characterization of viable populations of the constituent cell types of prostate tumors could provide valuable insight into the biology of cancer. The CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between normal and tumor-associated reactive stromal cells. Reactive stroma is characterized by smooth muscle differentiation, prostate down-regulation of SPOCK3, MSMB, CXCL13, and PAGE4, bladder down-regulation of TRPA1, HSD17B2, IL24, and SALL1, and an up-regulation of CXC-chemokines. This study identified a group of differentially expressed genes in CD90+ reactive stromal cells that are potentially involved in organ development and smooth muscle cell differentiation.

Publication Title

Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52350
Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin-A (BoNT-A)
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Introduction:The purpose of this study is to provide athe first global transcriptomic profiling and systems analysis of BoNT-A treated muscle over a one year period. Microarray analysis was performed on rat TA muscle from 4 groups (n=4/group) at 1,4, 12 and 52 weeks after BoNT-A injection and saline injected rats at 12 weeks as control. Fold changes were computed at each time point with respect to control. Results: Dramatic transcriptional adaptation occurs at 1 week with a paradoxical increase in expression of slow and immature isoforms; increased expression of genes in competing pathways of repair and atrophy; impaired mitochondrial biogenesis and increased metal ion imbalance. ECM adaptations occurred at 4weeks to the basal lamina and fibrillar ECM. The muscle transcriptome returned to the unperturbed state 12 weeks post-injection. Conclusion: Transcriptional adaptations resemble denervated muscle albeit some differences. Overall gene expression, across time, correlates with the generally accepted BoNT-A time course.

Publication Title

Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP018552
Probing the off-target effect of EGFP siRNA and pro-siRNA in the HeLa-d1EGFP cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared the mRNA expression profiles of HeLa-d1EGFP cells transfected with 4 nM EGFP siRNAs and pro-siRNAs by microarray. Overall design: We used microarray to study the off-target effect of siRNAs in the HeLa-d1EGFP cell line. After transfection of siRNAs for 24 hrs, RNA were extracted using Trizol. Deep sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB #E7530). HeLa-d1EGFP cells are HeLa cells stably expressing d1EGFP gene. EGFP siRNA is a siRNA made by chemical synthesis. EGFP100 and EGFPFL are pro-siRNAs made from either a 100 bp hairpin or a full length hairpin targeting EGFP coding sequence.

Publication Title

Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE44105
Probing off-target effect of LMNA siRNA and pro-siRNA in HeLa-d1EGFP cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared mRNA expression profile of HeLa-d1EGFP cells transfected with 4 nM LMNA siRNAs and pro-siRNAs by microarray.

Publication Title

Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE11686
Unique Transcriptional Profile in Wrist Muscles From Cerebral Palsy Patients
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cerebral palsy is caused be an upper motor neuron lesion which casues spasticity as well as secondary effects on muscle . Muscle from cerebral palsy patients is has been shown to be smaller, with more ECM and longer sarcomere lengths

Publication Title

Novel transcriptional profile in wrist muscles from cerebral palsy patients.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE16674
Analysis of gene expression in miR-34a overexpressing K562 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miR-34a is strongly induced upon TPA-induced megakaryocyte differentiation of K562 cells. To investigate the gene networks regulated by this miRNA during the process of differentiation we performed gene microarray analysis in K562 cells overexpressing miR-34a or a control sequence.

Publication Title

miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact