refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon SRP018552
Probing the off-target effect of EGFP siRNA and pro-siRNA in the HeLa-d1EGFP cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared the mRNA expression profiles of HeLa-d1EGFP cells transfected with 4 nM EGFP siRNAs and pro-siRNAs by microarray. Overall design: We used microarray to study the off-target effect of siRNAs in the HeLa-d1EGFP cell line. After transfection of siRNAs for 24 hrs, RNA were extracted using Trizol. Deep sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB #E7530). HeLa-d1EGFP cells are HeLa cells stably expressing d1EGFP gene. EGFP siRNA is a siRNA made by chemical synthesis. EGFP100 and EGFPFL are pro-siRNAs made from either a 100 bp hairpin or a full length hairpin targeting EGFP coding sequence.

Publication Title

Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE44105
Probing off-target effect of LMNA siRNA and pro-siRNA in HeLa-d1EGFP cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We have develped a novel method of making siRNAs (named pro-siRNA for prokaryotic siRNA). To evaluate off-targeting of pro-siRNA, we compared mRNA expression profile of HeLa-d1EGFP cells transfected with 4 nM LMNA siRNAs and pro-siRNAs by microarray.

Publication Title

Efficient and specific gene knockdown by small interfering RNAs produced in bacteria.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16674
Analysis of gene expression in miR-34a overexpressing K562 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

miR-34a is strongly induced upon TPA-induced megakaryocyte differentiation of K562 cells. To investigate the gene networks regulated by this miRNA during the process of differentiation we performed gene microarray analysis in K562 cells overexpressing miR-34a or a control sequence.

Publication Title

miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP123610
Gene Expression Changes in the LA/BC muscle of a knock-in mouse model of SBMA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Examining changes in expression in a mouse model of SBMA compared to WT littermates. Overall design: Mice sacrificed at 14wks of age had LABC isolated and cDNA generated and sequenced on an illumina platform.

Publication Title

Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP045727
Disrupting SUMOylation potentiates transactivation function and ameliorates polyglutamine AR-mediated disease
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Our findings demonstrate beneficial effects of enhancing transactivation function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may provide new targets for therapeutic intervention. Overall design: We mutated conserved lysines in the polyQ AR that are targeted by SUMO, a modification that inhibits AR transactivation function.

Publication Title

Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48444
Microarray-based gene expression data from BPLER tumor explants.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The gene expression of 6 different mouse xenografts initiated by BPLER cells analyzed by microarray.

Publication Title

A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34388
Transcriptional Alterations in Skeletal Muscle Following Desmin Deletion
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Desmin is a cytoskeletal protein in muscle involved in integrating cellular space and transmitting forces. In this study we sought to determine the effects of desmin deletion on skeletal muscle at the transcriptional level across many pathways of muscle physiology.

Publication Title

Skeletal muscle fibrosis develops in response to desmin deletion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50383
AR function is altered by polyglutamine expansion and by SUMO
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Expansion of a polyglutamine (polyQ) tract in the gene for the androgen receptor (AR) results in partial loss of transactivation function and causes spinobulbar muscular atrophy (SBMA). Modification of AR by small ubiquitin-like modifier (SUMO) reduces AR function in a promoter context-dependent manner.

Publication Title

Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor-mediated disease.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP110805
RNA-Seq of Kaposi's sarcoma reveal alterations in glucose and lipid metabolism
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). In sub-Saharan Africa, the high prevalence of both HIV-1 and KSHV has made KS a leading cancer in the region, associated with poor prognosis and high mortality due to late medical presentation and advanced disease stages. A better understanding of the cellular and viral transcriptome profiles during neoplastic growth will aid in the definition of biomarkers and cellular functions associated with KS tumorigenesis and progression. Our approach is to examine the transcriptome profile in actual KS lesions versus non-cancer tissues from the same individual for a total of four male African epidemic KS patients. These patients have undetectable HIV-1 plasma viral load after successful anti-retroviral therapy. Our results capture the cellular complexity of in vivo lesion environment and provide a marked contrast to those derived from in vitro monoculture models. The findings demonstrate that latency and immune modulation related functions dominate the viral gene expression pattern. Moreover, KSHV significantly affected the cellular transcriptome profile with genes involved in lipid and glucose metabolism disorder pathways being the most substantially dysregulated. Despite the implied infiltration of immune cells into the lesions as predicted by CIBERSORT, KS tumor continued to progress, suggesting immunological dysfunction in these KS patients despite control of HIV-1 viremia. Lastly, there is limited overlap of our in vivo dataset with in vitro studies, suggesting a limitation of in vitro KS models. Overall design: RNA-seq of Kaposi's sarcoma lesions and control tissues

Publication Title

RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP014484
Differences in CTCF binding site sequence are associated with unique regulatory and functional trends during embryonic stem cell differentiation [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

CTCF (CCCTC-binding factor) is a highly conserved 11-zinc finger DNA binding protein with tens of thousands of binding sites genome-wide. CTCF acts as a multifunctional regulator of transcription, having been previously associated with activator, repressor, and insulator activity. These diverse regulatory functions are crucial for preimplantation development and are implicated in the regulation of numerous lineage-specific genes. Despite playing a critical role in developmental gene regulation, the mechanisms that underlie developmental changes in CTCF recruitment and function are poorly understood. Our previous work suggested that differences in CTCF’s binding site sequence may affect the regulation of CTCF recruitment, as well as CTCF’s regulatory function. To investigate these two possibilities directly during a developmental process, changes in genome-wide CTCF binding and gene expression were characterized during in vitro differentiation of mouse embryonic stem cells. CTCF binding sites were initially separated into three classes (named LowOc, MedOc, and HighOc) based on similarity to the consensus motif. The LowOc class, with lower-similarity to the consensus motif, is more likely to show changes in binding during differentiation. These more dynamically bound sites are enriched for motifs that confer a lower in vitro affinity for CTCF, suggesting a mechanism where sites with low-binding affinity are more amenable to developmental control. Additionally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. In sum, these results suggest that the regulatory control of CTCF’s binding and function is dependent in part upon specific motifs within its DNA binding site. Overall design: Mouse E14 ES cells were differentiated in vitro for 4.5 days using retinoic acid. RNA-Seq was performed from cells collected before and after differentiation.

Publication Title

CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact