refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1194 results
Sort by

Filters

Technology

Platform

accession-icon GSE100083
Expression in equine cartilage stimulated with IL-1 in vitro
  • organism-icon Equus caballus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Equus caballus Gene 1.0 ST Array (equgene10st)

Description

The objective was to study the time-course effects of interleukin-1 (IL-1) on equine articular cartilage, with the aim to identify genes of relevance for cartilage pathology in osteoarthritis. Changes in gene expression related to inflammation, extracellular matrix, and phenotypic alterations was studied.

Publication Title

Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16464
Chondrogenic differentiation potential of OA chondrocytes and their use in autologous chondrocyte transplantation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Autologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT.

Publication Title

Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP033220
Antioxidants Accelerate Lung Cancer Progression in Mice
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Antioxidants are widely used to protect cells from damage induced by reactive oxygen species (ROS). The concept that antioxidants can help fight cancer is deeply rooted in the general population, promoted by the food supplement industry, and supported by some scientific studies. However, clinical trials have reported inconsistent results. Here, we show that supplementing the diet with the antioxidants N-acetylcysteine (NAC) and vitamin E markedly increases tumor progression and reduces survival in mouse models of B-RAF- and K-RAS-induced lung cancer. RNA sequencing revealed that NAC and vitamin E, which are structurally unrelated, produce highly coordinated changes in tumor transcriptome profiles, dominated by reduced expression of endogenous antioxidant genes. NAC and vitamin E increase tumor cell proliferation by reducing ROS, DNA damage, and p53 expression in mouse and human lung tumor cells. Inactivation of p53 increases tumor growth to a similar degree as antioxidants and abolishes the antioxidant effect. Thus, antioxidants accelerate tumor growth by inactivating the ROS-p53 axis. Because p53 inactivation occurs late in tumor progression, antioxidants may accelerate the growth of early tumors or precancerous lesions in high-risk populations such as smokers and patients with chronic obstructive pulmonary disease who receive NAC to relieve mucus production. Overall design: There were 3 experimental groups (untreated, NAC-treated and Vitamin E-treated. Each group consisted of 5 animals, and from each animal we harvested 2 tumor samples. Hence, in total 3x10=30 samples were profiled.

Publication Title

Antioxidants accelerate lung cancer progression in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64536
STAT3 knockdown during transformation
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

siSTAT3 knockdown of a tamoxifen initiated, transformation inducible, breast cancer model system (MCF10A-ER-Src), with associated controls of EtOH and siNEG treatments.

Publication Title

STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE24150
b-AP15, a novel proteasome inhibitor
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray based mRNA profiling was used to identify the mechanism of action for the small molecule b-AP15.

Publication Title

Inhibition of proteasome deubiquitinating activity as a new cancer therapy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE54294
Gene Expression Profiling of Peri-implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway in vivo
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of -catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

Publication Title

Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE9202
Expression data from mouse microvascular transcriptomes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Little is known about the pan-microvascular transcriptome, particularly considering gene transcripts and their encoded proteins that can be considered as vascular-selective in their expression.

Publication Title

Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24687
C-peptide regulates early transcription in rat proximal tubular cells
  • organism-icon Rattus norvegicus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

C-peptide exerts beneficial effects on glomerular hyperfiltration in type I diabetic patients. As C-peptide localizes to the nucleus, we investigated the transcriptional activities of C-peptide in proximal tubular cells isolated from diabetic rats.

Publication Title

Early transcriptional regulation by C-peptide in freshly isolated rat proximal tubular cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29859
Expression data from hypervitaminosis A rat diaphyseal bone
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young rats high doses of vitamin A and performed a global transcriptional analysis of diaphyseal bone after one week, i.e. just before the first fractures appeared. Microarray gene expression analysis revealed that 68 transcripts were differentially expressed in hypervitaminotic cortical bone and 118 transcripts were found when the bone marrow was also included. 98% of the differentially expressed genes in the bone marrow sample were up-regulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene Ontology (GO) analysis revealed that only samples containing bone marrow were associated to a GO term, which principally represented extracellular matrix (ECM). This is consistent with the histological findings of increased endosteal bone formation. Four of the genes in this ECM cluster and four other genes, including Cyp26b1 which is known to be up-regulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule, osteoadherin (Omd) was up-regulated. Further analysis of the major gene expression changes revealed distinct differences between cortical bone and bone marrow, e.g. there appeared to be augmented Wnt signaling in the bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was only found in samples containing bone marrow. Together, these results corroborate our previous observations of compartment-specific effects of vitamin A, with reduced periosteal but increased endosteal bone formation, and suggest important roles for Wnt signaling and hypoxia in the processes leading to spontaneous fractures.

Publication Title

Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE29169
Expression data of Hmg20 knock down I/11 cells and controls
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We performed microarray analysis to investigate the gene expression profile changes induced by Hmg20b knock down in I/11 cells.

Publication Title

The DNA binding factor Hmg20b is a repressor of erythroid differentiation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact