refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1194 results
Sort by

Filters

Technology

Platform

accession-icon SRP019500
MicroRNA-146 function in the innate immune response of zebrafish embryos to Salmonella typhimurium infection [RNA-seq]
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We used zebrafish embryos as an in vivo system to investigate the role of the microRNA-146 family (consisting of 2 members miR-146a and miR-146b) in the innate immune response to S. typhimurium infection. To determine the role of miR-146 microRNAs in the response to S. typhimurium infection we used Illumina RNA sequencing to compare the mRNA expression profiles of control embryos versus embryos with knockdown of miR-146a and miR-146b. RNA sequencing analysis of miR-146 knockdown embryos showed no major effects on pro-inflammatory gene expression or on the expression of transcriptional regulators and signal transduction components of the immune response. In contrast, apoliprotein-mediated lipid transport emerged as an infection-inducible pathway under miR-146 knockdown conditions, suggesting a function of miR-146 in regulating lipid metabolism during inflammation. Overall design: Embryos were injected at the one cell stage with a combination of two morpholinos targeting miR-146a and miR-146b, or with the standard control morpholino from GeneTools. Subsequently, at 28 hours post fertilzation (hpf) they were infected by injecting 200-250 colony forming units of S. typhimurium strain SL1027 into the caudal vein, or mock-injected with PBS. RNA was isolated at 8 hours post injection (hpi) for Illumina RNAseq analysis. Two independent experiments were performed for RNAseq analysis of biological duplicates.

Publication Title

MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32513
Identification of the core gene-regulatory network that governs the dynamic adaptation of intestinal homeostasis during conventionalization in mice
  • organism-icon Mus musculus
  • sample-icon 144 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Molecular adaptation of the intestinal mucosa occurs during microbial conventionalization to maintain a balanced immune response. However, the genetic regulation of such adaptation is obscure. Here, combined analysis of germ free and conventionalized mice revealed that the major molecular adaptations were initiated at day 4 of conventionalization with a strong induction of innate immune functions followed by stimulation of adaptive immune functions. We identified central regulatory genes and reconstructed a common regulatory network that appeared to be sufficient to regulate the dynamic adaptation of the intestinal mucosa to the colonizing microbiota. The majority of the genes within this regulatory network play roles in mucosal inflammatory diseases in mouse and human. We propose that the identified central regulatory network may serve as a genetic signature for control of intestinal homeostasis in healthy mice and may help to unravel the genetic basis of pathway dysregulation in human intestinal inflammatory diseases.

Publication Title

Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE100393
Transcriptional profiling of small intestinal lamina propria Dendritic cells by microarray
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

CD103+CD11b+ dendritic cells (DC) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGF beta 1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103CD11b+ DC subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T (Treg) cells in vitro and in vivo, and by reduced numbers of endogenous TH17 cells in the intestinal mucosa. Thus, TGF beta 1 mediated signalling may explain the tissue-specific development of these unique DCs.

Publication Title

TGFβR signalling controls CD103<sup>+</sup>CD11b<sup>+</sup> dendritic cell development in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77919
ALS-causing mutations differentially affect PGC-1alpha expression and function in the brain vs. peripheral tissues
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Amyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS.

Publication Title

ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24150
b-AP15, a novel proteasome inhibitor
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray based mRNA profiling was used to identify the mechanism of action for the small molecule b-AP15.

Publication Title

Inhibition of proteasome deubiquitinating activity as a new cancer therapy.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE29169
Expression data of Hmg20 knock down I/11 cells and controls
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We performed microarray analysis to investigate the gene expression profile changes induced by Hmg20b knock down in I/11 cells.

Publication Title

The DNA binding factor Hmg20b is a repressor of erythroid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43928
Expression data from TNF-stimulated mouse glomeruli
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The specific contribution of the two TNF-receptors Tnfr1 and Tnfr2 to TNF-induced inflammation in the glomerulus is unknown. In mice, TNF exposure induces glomerular expression of inflammatory mediators like adhesion molecules and chemokines in vivo, and glomerular accumulation of leukocytes.

Publication Title

Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29859
Expression data from hypervitaminosis A rat diaphyseal bone
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young rats high doses of vitamin A and performed a global transcriptional analysis of diaphyseal bone after one week, i.e. just before the first fractures appeared. Microarray gene expression analysis revealed that 68 transcripts were differentially expressed in hypervitaminotic cortical bone and 118 transcripts were found when the bone marrow was also included. 98% of the differentially expressed genes in the bone marrow sample were up-regulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene Ontology (GO) analysis revealed that only samples containing bone marrow were associated to a GO term, which principally represented extracellular matrix (ECM). This is consistent with the histological findings of increased endosteal bone formation. Four of the genes in this ECM cluster and four other genes, including Cyp26b1 which is known to be up-regulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule, osteoadherin (Omd) was up-regulated. Further analysis of the major gene expression changes revealed distinct differences between cortical bone and bone marrow, e.g. there appeared to be augmented Wnt signaling in the bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was only found in samples containing bone marrow. Together, these results corroborate our previous observations of compartment-specific effects of vitamin A, with reduced periosteal but increased endosteal bone formation, and suggest important roles for Wnt signaling and hypoxia in the processes leading to spontaneous fractures.

Publication Title

Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP136494
Gene expression profiling of the olfactory tissues from sex-separated and sex-combined female and male mice
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sought to investigate the scope of cellular and molecular changes within a mouse's olfactory system as a function of its exposure to odors emitted from members of the opposite sex. To this end, we housed mice either separated from members of the opposite sex (sex-separated) or together with members of the opposite sex (sex-combined) until six months of age and then profiled transcript levels within the main olfactory epithelium (MOE), vomeronasal organ (VNO), and olfactory bulb (OB) of the mice via RNA-seq. For each tissue type, we then analyzed gene expression differences between sex-separated males and sex-separated females (SM v SF), sex-combined males and sex-combined females (CM v CF), sex-separated females and sex-combined females (SF v CF), and sex-separated males and sex-combined males (SM v CM). Within both the MOE and VNO, we observed significantly more numerous gene expression differences between males and females when mice were sex-separated as compared to sex-combined. Chemoreceptors were highly enriched among the genes differentially expressed between males and females in sex-separated conditions, and these expression differences were found to reflect differences in the abundance of the corresponding sensory neurons. Overall design: For each combination of tissue (MOE, VNO, OB), sex (F, M), and condition (sex-separated [S], sex-combined [C]), we generated three biological replicate samples of RNA, each of which contained equal quantities of RNA from two different mice. This resulted in a total of 36 samples.

Publication Title

Sex separation induces differences in the olfactory sensory receptor repertoires of male and female mice.

Sample Metadata Fields

Sex, Age, Cell line, Subject

View Samples
accession-icon GSE99340
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts
  • organism-icon Homo sapiens
  • sample-icon 402 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact