refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1194 results
Sort by

Filters

Technology

Platform

accession-icon GSE66988
Retinoid X Receptor activation reverses the age-related deficiency in myelin debris phagocytosis and enhances remyelination
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The efficiency of central nervous system (CNS) remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study we show that expression of genes involved in the retinoid X receptor (RXR) pathway are decreased with aging in myelin-phagocytosing cells. Loss of RXR function in young macrophages mimics aging by delaying remyelination after experimentally-induced demyelination, while RXR agonists partially restore myelin debris phagocytosis in aged macrophages. The FDA-approved RXR agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in aging human monocytes to a more youthful profile. These results reveal the RXR pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Publication Title

Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE23614
Gene expression data from FLCN-restored UOK257-2 renal cancer cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

UOK257 cell line was derived from a BHD patient. It harbors a germline mutation in FLCN (c.1285dupC) and LOH. UOK257-2 cells were generated from UOK257 cells by introducing wildtype FLCN using retrovirus. FLCN inactivation induces TFE3 transcriptional activity by increasing its nuclear localization. Thus expression microarray was used to identify the genes regulated by FLCN and TFE3.

Publication Title

The UOK 257 cell line: a novel model for studies of the human Birt-Hogg-Dubé gene pathway.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41137
Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 135 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.

Publication Title

Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE2443
Prostate cancer - comparison of androgen-dependent and -independent microdissected primary tumor
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Affymetrix U133A comparison of two groups (10 samples each): untreated (androgen-dependent) primary prostate cancer (Gleasons 5-9) and androgen-independent primary prostate cancer. All samples were microdissected for tumor cells only.

Publication Title

Molecular alterations in primary prostate cancer after androgen ablation therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP080338
Ionic immune suppression within the tumour microenvironment limits T cell effector function
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tumours progress despite being infiltrated by effector T cells. Tumour necrosis is associated with poor survival in a variety of cancers. Here, we report that that necrosis causes release of an intracellular ion, potassium, into the extracellular fluid of human and mouse tumours. Surprisingly, elevated extracellular potassium ([K+]e) was sufficient to profoundly suppress mouse and human T cell anti-tumour function. Elevations in [K+]e acted to acutely impair T cell receptor (TCR) dependent Akt-mTOR phosphorylation and effector function. Potassium mediated suppression of Akt-mTOR signalling and T cell effector function required intact activity of PP2A, a serine/threonine phosphatase. The suppressive effect mediated by elevated [K+]e required a T cell-intrinsic increase in intracellular potassium ([K+]i) and was independent of changes in plasma membrane potential (Vm). Finally, ionic reprogramming of tumour-specific T cells via over-expression of the voltage-gated potassium channel Kv1.3 lowered [K+]i and improved effector functions in vitro and in vivo, with this gain of function being dependent on intact channel function. Consequently, Kv1.3 T cell expression enhanced tumour clearance and the survival of melanoma-bearing mice. These results uncover a previously undescribed ionic checkpoint against T cell function within tumours and identify new strategies for cancer immunotherapy. Overall design: RNA expression was measured by RNA-Seq on day 5 of cultures, maintained in individual biologial triplicates which were stimulated with immobilized anti-CD3/28 antibodies or kept in complete media (no stim) - with equivalent conditions treated with isotonic media containing elevated potassium.

Publication Title

Ionic immune suppression within the tumour microenvironment limits T cell effector function.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP013758
The Folliculin-Fnip1 pathway deleted in human Birt-Hogg-Dube syndrome is required for B cell development.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Birt-Hogg-Dube (BHD) syndrome is an autosomal dominant disorder characterized by hamartomas of skin follicles, cystic lung disease, and renal neoplasia. Affected individuals carry heterozygous mutations in Folliculin (FLCN), a tumor suppressor gene that becomes biallelically inactivated in kidney tumors by second-hit mutations. Similar to other factors implicated in kidney malignancies, Folliculin has been shown to modulate activation of mammalian target of rapamycin (mTOR). However, its precise in vivo function is largely unknown because germline deletion of Flcn results in early embryonic lethality in animal models. We here describe mice deficient in the newly characterized Folliculin-Interacting Protein 1 (Fnip1). In contrast to Flcn, Fnip1-/- mice develop normally, are not susceptible to kidney neoplasia, but display a striking pro-B cell block that is independent of mTOR activity. We show that this developmental arrest results at least in part from impaired V(D)J recombination and caspase-induced cell death, and that pre-recombined V(D)J and Bcl2 transgenes reconstitute pre-B and mature B cell populations respectively. We also demonstrate that conditional deletion of Flcn recapitulates the pro-B cell arrest of Fnip1-/- mice. Our studies thus demonstrate that the Flcn-Fnip complex deregulated in BHD syndrome is absolutely required for B cell differentiation and that it functions both through mTOR dependent and independent pathways. Overall design: RNASeq data for two pro-B cell subsets (fraction B and CC'') isolated from wt and Fnip1-/- mice

Publication Title

The folliculin-FNIP1 pathway deleted in human Birt-Hogg-Dubé syndrome is required for murine B-cell development.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE81653
Development of complete personalized treatment plans for early stage colorectal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 251 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

593 FFPE colorectal cancer samples were used to generate three prediction models: Recurrence prediction, 5FU efficacy prediction, and FOLFOX efficacy prediction

Publication Title

Building personalized treatment plans for early-stage colorectal cancer patients.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39716
Expression data from pheochromocytoma (PHEO) and paraganglioma (PGL) tumor samples
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST Gene Chips. In this dataset we include expression data obtained from 8 normal adrenal medulla and 45 PHEOs/PGLs patient samples.

Publication Title

Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE19279
S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells [HG-U133A]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pancreatic cancer is a devastating disease with both local invasion and distant metastasis. Identifying the genes expressed in liver metastases and signatures of metastatic progression would therefore be of particular importance as they could aid in both recurrence prediction as well as representing novel therapeutic targets.

Publication Title

S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19280
S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells [HG-U133B]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pancreatic cancer is a devastating disease with both local invasion and distant metastasis. Identifying the genes expressed in liver metastases and signatures of metastatic progression would therefore be of particular importance as they could aid in both recurrence prediction as well as representing novel therapeutic targets.

Publication Title

S100P is a metastasis-associated gene that facilitates transendothelial migration of pancreatic cancer cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact