refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 69 results
Sort by

Filters

Technology

Platform

accession-icon GSE70834
Serotonergic regulation of melanocyte conversion: a bioelectric network explains stochastic all-or-none hyperpigmentation
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Depolarization of resting membrane potential in select cells in Xenopus larvae induces striking hyperpigmentation due to dysregulation of melanocytes. Here, we show that this non-cell-autonomous process is mediated by cAMP, CREB, and the transcription factors Sox10 and Slug. Our microarray analysis reveals specific transcripts responsive to Vmem levels within a few hours of depolarization, and a set of 517 transcripts whose expression remains altered during the full hyperpigmented phenotype over a week later, linking instructor cell-depolarization to a range of developmental processes and disease states. We also show that voltage-dependent conversion of melanocytes involves the MSH-secreting melanotrope cells of the pituitary, and formulate a model for the molecular pathway linking the bioelectric properties of melanocyte cells microenvironment in vivo to the genetic and cellular changes induced in this melanoma-like phenotype. Remarkably, the phenotype is all-or-none: each individual animal either undergoes melanocyte conversion or not, as a whole. This group decision is stochastic, resulting in varying percentages of hyperpigmented individuals for a given experimental treatment. To understand the stochasticity and dynamic properties of this complex signaling system, we developed a novel computational method that automates the reverse-engineering of stochastic dynamic signaling models. We used this method to discover a network model that quantitatively explained our complex dataset, and even made correct predictions for new experiments that we validated in vivo. Taken together, these data (1) reveal new molecular details about a novel trigger of metastatic-like developmental cell behavior in vivo, (2) suggest new targets for biomedical intervention, and (3) demonstrate proof-of-principle of a computational method for understanding stochastic decision-making by cells during embryonic development and metastasis.

Publication Title

Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP106492
TREM2 is a global regulator of microglia energetic and biosynthetic metabolism during steady state and in Alzheimer’s disease
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The most common form of senile dementia, Alzheimer’s disease (AD), is characterized by Aß plaques and neurofibrillary tangles in the CNS. AD genetic studies have identified high-risk hypomorphic variants in TREM2, a myeloid cell surface receptor that enables concerted microglial responses to Aß plaques and neuronal cell death, including proliferation, survival, clustering and phagocytosis. How TREM2 promotes these responses is not known. Here, we demonstrate that TREM2 drives mTOR signaling, which maintains high ATP levels, supports biosynthetic pathways and suppresses AMPK phosphorylation and autophagy. In vitro, TREM2-deficient macrophages undergo dramatically increased autophagy and die in response to growth factor limitation or ER stress. Excessive autophagy is also evident in microglia from Trem2-/- 5XFAD mice and in post-mortem specimens from AD patients carrying TREM2 risk variants. Metabolic derailment, autophagy and cell death can be circumvented by engaging alternative energy production pathways. Thus, restoring microglial energetic and anabolic levels may be a future therapeutic avenue for TREM2-associated neurological disease. Overall design: Bone marrow-derived macrophages (BMDMs) from WT and Trem2–/– mice were cultured in either 0.5% or 10% LCCM overnight in complete RPMI. Some samples cells were stimulated with 10 ng/ml LPS for 4 hours.

Publication Title

TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE7493
Mutant SOD1 rats (lobsi-affy-rat-194438)
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Missense mutations in the gene for the ubiquitously expressed superoxide dismutase-1 (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease in humans killing selectively large motor neurons. Mice and rats overexpressing mutant SOD1 develop an adult onset neurodegenerative disease with hindlimb-paralysis and subsequent death similar to the human condition. In order to analyze the effects of mutant SOD1 expression onto the most affected cell-type in ALS, a small subpopulation of spinal cord cells, we propose to use laser microdissection to isolate mouse lumbar motor neurons and to assess the changes onto the mRNA expression profile using Affymetrix GeneChips compared to control animals. While two studies applying a genomic approach on the ALS mouse models used the entire spinal cord, contributions of changes to motor neurons were masked by the inflammatory effects of mutant SOD1 and the much larger population of non-motor neuronal cells. What is therefore needed is a cell-type specific expression profile that could reveal dysregulations in the transcriptome of the affected motor neurons.

Publication Title

Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89720
Thy-1 Expression Enriches for Self-Renewing Murine MRUs
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Serially transplantable mammary epithelial cells express the Thy-1 antigen.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89718
Thy-1 Expression Enriches for Self-Renewing Murine MRUs [BL6]
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Enriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.

Publication Title

Serially transplantable mammary epithelial cells express the Thy-1 antigen.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89719
Thy-1 Expression Enriches for Self-Renewing Murine MRUs [FVB]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Enriched cell populations from murine mammary epithelium were isolated by FACS and subjected to Affymetrix Mouse 430 2.0 microarray analysis.

Publication Title

Serially transplantable mammary epithelial cells express the Thy-1 antigen.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31613
Transcriptional architecture of the primate neocortex
  • organism-icon Macaca mulatta
  • sample-icon 250 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Genome-wide transcriptional profiling allows characterization of the molecular underpinnings of neocortical organization, including cortical areal specialization, laminar cell type diversity and functional anatomy. Microarray analysis of individual cortical layers across sensorimotor and association cortices in rhesus macaque demonstrated robust and specific laminar and areal molecular signatures driven by differential expression of genes associated with specialized neuronal function. Gene expression corresponding with laminar architecture was generally similar across cortical areas, although genes with robust areal patterning were often highly laminar as well, and these patterns were more highly conserved between macaque and human as compared to mouse. Layer 4 of primate primary visual cortex displayed a distinct molecular signature compared to other cortical regions, a specialization not observed in mouse. Overall, transcriptome-based relationships were strongest between proximal layers in a cortical area, and between neighboring areas along the rostrocaudal axis, reflecting in vivo cortical spatial topography and therefore a developmental imprint.

Publication Title

Transcriptional architecture of the primate neocortex.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE34006
Role of Adenosine 2A Receptors (A2AR) on regulatory T cells (Tregs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The adenosine 2A receptor (A2AR) is expressed on regulatory T cells (Tregs), but the functional significance is currently unknown. We compared the gene expression between wild-type (WT) and A2AR knockout (KO) Tregs and between WT Tregs treated with vehicle or a selective A2AR agonist.

Publication Title

Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62254
Molecular analysis of gastric cancer identifies discrete subtypes associated with distinct clinical characteristics and survival outcomes: the ACRG (Asian Cancer Research Group) study [gastric tumors]
  • organism-icon Homo sapiens
  • sample-icon 294 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastric cancer, a leading cause of cancer related deaths, is a heterogeneous disease, with little consensus on molecular subclasses and their clinical relevance. We describe four molecular subtypes linked with distinct patterns of molecular alterations, disease progression and prognosis viz. a) Microsatellite Instable: hypermutated intestinal subtype tumors occurring in antrum, best overall prognosis, lower frequency of recurrence (22%), with liver metastasis in 23% of recurred cases b) Mesenchymal-like: diffuse tumors with worst prognosis, a tendency to occur at an earlier age and highest recurrence (63%) with peritoneal seeding in 64% of recurred cases, low frequency of molecular alterations c) TP53-inactive with TP53 loss, presence of focal amplifications and chromosomal instability d) TP53-active marked by EBV infection and PIK3CA mutations. The key molecular mechanisms and associated survival patterns are validated in multiple independent cohorts, to provide a consistent and unified framework for further preclinical and clinical research.

Publication Title

Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP058975
Daytime soybean transcriptome fluctuations during water deficit stress
  • organism-icon Glycine max
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

By sequencing 36 cDNA libraries with Illumina technology, we identified genes differentially expressed in soybean plants in response to water deficit and genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes (Glyma v1.1), 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants. Overall design: Gene expression analysis of soybean leaves under water deficit in 6 periods of day by sequencing 36 libraries, in triplicate, in Illumina platform.

Publication Title

Daytime soybean transcriptome fluctuations during water deficit stress.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact