refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 79 results
Sort by

Filters

Technology

Platform

accession-icon GSE57004
Cpeb4-mediated Translational Regulatory Circuitry Controls Terminal Erythroid Differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Erythropoiesis is essential to mammals and is regulated at multiple steps by both extracellular and intracellular factors. Many transcriptional regulatory networks in erythroid differentiation have been well characterized. However, our understanding of post-transcriptional regulatory circuitries in this developmental process is still limited. Using genomic approaches, we identified a sequence-specific RNA-binding protein, Cpeb4, which is dramatically induced in terminal erythroid differentiation (TED) by two erythroid important transcription factors, Gata1/Tal1. Cpeb4 belongs to the cytoplasmic polyadenylation element binding (CPEB) protein family that regulates translation of target mRNAs in early embryonic development, neuronal synapse, and cancer. Using primary mouse fetal liver erythroblasts, we found that Cpeb4 is required for terminal erythropoiesis by repressing the translation of a set of mRNAs highly expressed in progenitor cells. This translational repression occurs by the interaction with a general translational initiation factor, eIF3. Interestingly, Cpeb4 also binds its own mRNA and represses its translation, thus forming a negative regulatory circuitry to limit Cpeb4 protein level. This mechanism ensures that the translation repressor, Cpeb4, does not interfere with the translation of other mRNAs in differentiating erythroblasts. Our study characterized a translational regulatorycircuitry that controls TED and revealed that Cpeb4 is required for somatic cell differentiation.

Publication Title

Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37469
Minor clone provides a reservoir for relapse in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Mapping 250K Nsp SNP Array (mapping250knsp)

Description

In this study we addressed subclonal evolutionary process after treatment and subsequent relapse in multiple myeloma (MM) in a cohort of 24 MM patients treated either with conventional chemotherapy or with the proteasome inhibitor, bortezomib. Because MM is a highly heterogeneous disease coupled with a large number of DNA copy number alterations (CNAs) and loss of heterozygosity (LOH), we focused our study on the secondary genetic events: 1q21 gain, NF-kB activating mutations, RB1 and TP53 deletions, that seem to reflect progression. By using genome-wide high resolution SNP arrays we identified subclones with nonlinear complex evolutionary histories in a third of patients with myeloma, the relapse clone apparently derived from a minor subclone at diagnosis. Such reordering of the spectrum of genetic lesions during therapy is likely to reflect selection of genetically distinct subclones not initially competitive against the dominant population that survived chemotherapy, thrived and acquired new anomalies. In addition we found that emergence of minor subclones at relapse was significantly associated with bortezomib treatment. Altogether, these data support the idea of new strategy of future clinical trials in MM that would combine targeted therapy and subpopulations control to eradicate all myeloma subclones in order to obtain long-term remission.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE37414
Expression of genetic adaptability of cancer cells under treatment selection pressure in multiple myeloma patients
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Series GSE25262 patients on expression side.

Publication Title

Minor clone provides a reservoir for relapse in multiple myeloma.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE20391
Comprehensive expression profiling across primary fetal liver terminal erythroid differentiation
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Primary murine fetal liver cells were freshly isolated from day e14.5 livers and then sorted for successive differentiation stages by Ter119 and CD71 surface expression (ranging from double-negative CFU-Es to Ter-119 positive enucleated erythrocytes) [Zhang, et al. Blood. 2003 Dec 1; 102(12):3938-46]. RNA isolated from each freshly isolated, stage-sorted population was reverse-transcribed, labelled, and then hybridized onto 3' oligo Affymetrix arrays. Important erythroid specific genes as well as the proteins that regulate them were elucidated through this profiling based on coexpression and differential expression patterns as well as by extracting specific GO categories of genes (such as DNA-binding proteins).

Publication Title

Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32664
Exon-level analyses of neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this study, mRNA expression profiles of 113 primary untreated human neuroblastoma samples were compared with the aim to identify prognostic exon and gene sets as well as parameters associated with alternative exon use. The primary neuroblastoma specimens were from tumor banks in Cologne or Essen, Germany, Ghent, Belgium and Valencia, Spain. All patients were diagnosed between 1998 and 2007 and treated according to the German Neuroblastoma trials NB97, NB 2004 or the SIOPEN protocol.

Publication Title

Smac mimetic LBW242 sensitizes XIAP-overexpressing neuroblastoma cells for TNF-α-independent apoptosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE56534
Infection of macrophages by Toxoplasma Progeny from a Type II x Type III cross
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Infection of RAW264.7 cells for 24 hours with 32 Toxoplasma Progeny from a Type II x Type III cross

Publication Title

GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33656
Gene expression in articular cartilage - subchondral bone of FRZB knockout mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objective : To study molecular changes in the articular cartilage and subchondral bone of the tibial plateau from mice deficient in frizzled related protein (Frzb) compared to wild-type mice by transcriptome analysis.

Publication Title

Tight regulation of wingless-type signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP012062
RNA-sequencing analysis of NB4 cells overexpressing miR-125b
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

To better understand the mechanisms of blockage of myeloid differentiation and apoptosis and induction of proliferation by miR-125b, we proceeded to identify miR-125b target genes involved in these pathways. We analyzed the total cellular gene expression pattern by RNA-sequencing of the parental NB4 myeloid cell line and that transiently transfected with miR-125b. We generated four cDNA libraries corresponding to duplicates of miR-125b and control cells. Overall design: Compare the gene expression levels in miR control transfected cells with that in miR-125b transfected NB4 cells. 

Publication Title

MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP012041
RNA-sequencing analysis of 32Dclone3 cells overexpressing miR-125b
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

To better understand the mechanisms of blockage of myeloid differentiation and apoptosis and induction of proliferation by miR-125b, we preceded to identify miR-125b target genes involved in these pathways. We analyzed the total cellular gene expression pattern by RNA-sequencing of the parental 32Dclone3 myeloid cell line and that ectopically expressing miR-125b. We generated four cDNA libraries corresponding to duplicates of miR-125b and control cells. Overall design: Compare the gene expression level in vector transduced 32Dclone3 cells with that in miR-125b transduced 32Dclone3 cells. 

Publication Title

MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP004639
RNA-Seq analysis of microRNA expression profiles in mouse primary CFU-E late erythroid progenitors and Ter119+ mature erythroblasts
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Using RNA-seq technology, we quantitatively determined the expression profile of microRNAs during mouse terminal erythroid differentiation. CFU-E erythroid progenitors were isolated from E14.5 fetal liver as the Ter119, B220, Mac-1, CD3 and Gr-1 negative, C-Kit positive and 20% high CD71 population. Mature Ter119+ erythroblasts were isolated from E14.5 fetal liver as C-Kit negative and Ter119 positive population. Consistent with nuclear condensation and global gene expression shut down during terminal erythroid differentiation, we found that the majority of microRNAs are downregulated in more mature Ter119+ erythroblasts compared with CFU-E erythroid progenitors. Overall design: Examination of microRNA expression profiles in 2 cell types

Publication Title

miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact