refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 44 results
Sort by

Filters

Technology

Platform

accession-icon SRP131763
Temporal RNA-seq analysis of human skeletal myotubes synchronized in vitro
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. Extensive rhythmic transcription was observed in human skeletal muscle in comparison to in vitro cell culture. However, nearly half of the in vivo rhythmicity was lost at the mRNA accumulation level. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin stimulated glucose uptake were significantly reduced upon CLOCK depletion. Altogether, our findings suggest an essential role for cell-autonomous circadian clocks in coordinating muscle glucose homeostasis and lipid metabolism in humans. Overall design: 100 samples from 2 donors. Together with GSE108539, part of the same study described above.

Publication Title

Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP066481
A Mammalian Enhancer trap Resource for Discovering and Manipulating Neuronal Cell Types
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

There is a continuing need for driver strains to enable cell type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (http://enhnacertrap.bio.brandeis.edu). Overall design: Examination of 6 cortical mouse neuronal cell types. 5 of which are in layer 6 in 3 different cortical regions.

Publication Title

A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types.

Sample Metadata Fields

Sex, Cell line, Subject

View Samples
accession-icon GSE46726
In Vivo Mapping of Notch Pathway Activity in Normal and Stress Hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46723
Expression data from adult Myeloerythroid Progenitors (MP) Hes1-GFP positive and adult Myeloerythroid Progenitors (MP) Hes1-GFP negative
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46722
Expression data from adult LSK Hes1-GFP positive and adult LSK Hes1-GFP negative
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46724
Expression data from adult Myeloerythroid Progenitors (MP) ICN2 positive and adult Myeloerythroid Progenitors (MP) ICN2 negative
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46725
Expression data from E13.5 Fetal Liver LSK Hes1-GFP positive and E13.5 Fetal Liver LSK Hes1-GFP negative
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE28005
Charaterization of the initial molecular events of adipose tissue development and growth during overfeeding in humans
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The adaptive mechanisms in response to excess energy supply are still poorly known in humans. Our aims were to define metabolic responses and changes in gene expression in adipose tissue of healthy volunteers during fat overfeeding.

Publication Title

Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE50484
Regulation of Energy Metabolism and Mitochondrial Biogenesis Independently from the SIRT1-PGC1a Pathway in Human Skeletal Muscle during Lipid Overfeeding
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The adaptive mechanisms in response to excess energy supply are still poorly known in humans. Our aims were to define metabolic responses and changes in gene expression in skeletal muscle of healthy volunteers during fat overfeeding.

Publication Title

Regulation of energy metabolism and mitochondrial function in skeletal muscle during lipid overfeeding in healthy men.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE39770
Expression data from embryonic stem cells following siRNA transfection of UPS members [Differentiation_ES]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

While transcriptional regulation of stem cell self-renewal and differentiation has been extensively studied, only a small number of studies have addressed the roles for post-translational modifications in these processes. A key mechanism of post-translational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Using UPS-targeted RNAi screens, we identify novel regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme, Psmd14, and the E3 ligase, Fbxw7, and characterize their importance in ES cell pluripotency and cellular reprogramming.

Publication Title

Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact