refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12457
Comparison of Environmental and Genetic models of ADHD
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

ADHD is the most common neurobehavioral disorder in school-aged children. In addition to genetic factors, environmental influences or gene x environmental interactions also play an important role in ADHD. One example of a well studied environmental risk factor for ADHD is exposure to polychlorinated biphenyls (PCBs). In this study, we investigated whether the well-established genetic model of ADHD based on the Spontaneously Hypertensive Rat (SHR) and a well established PCB-based model of ADHD exhibited similar molecular changes in brain circuits involved in ADHD. The brains from 28 male rats (8 SHR, 8 Sprague-Dawley (SD) controls, 8 Wistar-Kyoto (WKY) controls, and 4 PCB-exposed SD rats) were harvested at postnatal day 55-65 and RNA was isolated from six brain regions of interest. The RNA was analyzed for differences in expression of a set of 308 probe sets interrogating 218 unique genes considered highly relevant to ADHD or epigenetic gene regulation using the Rat RAE 230 2.0 GeneChip (Affymetrix). Selected observations were confirmed by real time quantitative RT-PCR. The results show that the expression levels of genes Gnal, COMT, Adrbk1, Ntrk2, Hk1, Syt11 and Csnk1a1 were altered in both the SHR rats and the PCB-exposed SD rats. Arrb2, Stx12, Aqp6, Syt1, Ddc and Pgk1 expression levels were changed only in the PCB-exposed SD rats. Genes with altered expression only in the SHRs included Oprm1, Calcyon, Calmodulin, Lhx1 and Hes6.The epigenetic genes Crebbp, Mecp2 and Hdac5 are significantly altered in both models. The data provide strong evidence that genes and environment can affect different set of genes in two different models of ADHD and yet result in the similar disease-like symptoms.

Publication Title

A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP193870
ZMYM2 inhibits Nanog-mediated reprogramming
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

RNASeq data from WT, Zmym2 knockout- and Zmym2 overexpressing- E14tg2a mouse embryonic stem cells Overall design: RNASeq of ESCs in medium containing Serum and Leukaemia Inhibitory Factor (LIF)

Publication Title

ZMYM2 inhibits NANOG-mediated reprogramming.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE76855
Medullary Carcinoma of the colon
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This study examined the expression profile of medullary carcioma of the colon compared to adjacent histologically normal colonic mucosa.

Publication Title

Medullary carcinoma of the colon: a distinct morphology reveals a distinctive immunoregulatory microenvironment.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE83861
Effect of 13RAP2.12 overexpression
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

The effect of the overexpression of a stabilized version of the transcription factor RELATED TO APETALA2.12 (RAP2.12) on the transcriptome of Arabidopsis rosettes was investigated. To this purpose, 4-week old rosette of wild-type and 35S:13RAP2.12 plants were compared. Samples were composed of pools of 3 plants.

Publication Title

Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE17919
Expression profiling of different adult female tissues isolated from Anopheles gambiae females
  • organism-icon Anopheles gambiae
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation, and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. In Anopheles, they contribute to the defense against malaria parasite invasion during the early sporogonic cycle. We used microarrays to identify transcripts that are specific or enriched in circulating hemocytes compared to either neuronal or to the rest of the body.

Publication Title

Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE17866
Expression profiling of hemocytes from Anopheles gambiae after malaria parasite infection
  • organism-icon Anopheles gambiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Insect hemocytes mediate important cellular immune responses including phagocytosis and encapsulation, and also secrete immune factors such as opsonins, melanization factors, and antimicrobial peptides. In Anopheles, they contribute to the defense against malaria parasite invasion during the early sporogonic cycle.

Publication Title

Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42133
Disrupted functional neworks in autism underlie early brain maldevelopment and provide accurate classification
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The disrupted genetic mechanisms underlying neural abnormalities in Autism Spectrum Disorder remain mostly unknown and speculative. No biological marker nor genetic signature is currently available to assist with early diagnosis.

Publication Title

Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practices.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP165224
Three Transcription Factor Functions Empower Progression from Naïve to Formative Pluripotency [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The gene regulatory network in naïve mouse embryonic stem cells (ESCs) must be reconfigured for lineage competence. Tcf3 enables rewiring to formative pluripotency by repressing components of the ESC transcription factor circuitry. However, elimination of Tcf3 only delays, and does not prevent, state transition. Here we delineate distinct contributions of the Ets-family transcription factor Etv5 and the repressor Rbpj. Downstream of Erk1/2 signalling, Etv5 activates enhancers for formative pluripotency. Concomitant up-regulation of Rbpj ensures irreversible exit from the naïve state by extinguishing reversal factors, Nanog and Tbx3. Triple deletion of Etv5, Rbpj and Tcf3 incapacitates ESCs, such that they remain undifferentiated and locked in self-renewal even in the presence of differentiation stimuli. Thus, pluripotency progression is driven hierarchically by two repressors, that respectively dissolve and extinguish the naive network, and an initiator that commissions the formative network. Similar tripartite action may be a general mechanism for efficient cell transitions. Overall design: RNA-seq analysis of parental Rex1-GFPd2 ES cells (RGd2), and deletion mutants generated in this background (Etv5-KO, RbpJ-KO, Etv5-RpbJ-dKO, Etv5-RbpJ-Tcf3-tKO) cultured in 2i, N2B27 or supplemented with Chiron, 3 biological replicates per condition.

Publication Title

Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP131761
Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations
  • organism-icon Homo sapiens
  • sample-icon 189 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining tissue integrity. We have previously shown that mouse skin connective tissue, the dermis, is comprised of functionally distinct fibroblast lineages. However, the extent of fibroblast heterogeneity in human skin is unknown. Here, using a combination of spatial transcriptional profiling of human and mouse dermis and single cell transcriptional profiling of human dermal fibroblasts, we show that there are at least four distinct fibroblast populations in adult human skin. We define markers permitting prospective isolation of these cells and show that although marker expression is rapidly lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signalling, T cell communication and the ability to support human epidermal reconstitution in organotypic culture. Furthermore, while some fibroblast subpopulations are spatially segregated, others are not. These findings have profound implications for normal wound healing and diseases characterized by excessive fibrosis, and suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications. Overall design: Spatial RNA sequencing of human papillary versus reticular dermis for 3 individuals, and single cell RNA sequencing of dermal fibroblasts for a single individual.

Publication Title

Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact