refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon GSE104656
Effect of Pre- and Postnatal Exposure to urban PM2.5 on the Transcriptome of the Developing and Early-Life Mouse Lung
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Over the last years, evidence has grown that exposure to air pollution, in addition to impairing lung function and health in individuals of all age, can be linked to negative effects in newborn when present during pregnancy. Data suggests that intrauterine exposure of fetuses (exposure of the mother to air pollution during pregnancy) in fact exerts a negative impact on lung development. However, the means by which exposure during pregnancy affects lung development, have not been studied in depth yet. In this study, we investigated alterations of the transcriptome of the developing lung in a mouse model of gestational and early-life postnatal exposure to urban PM2.5 (from Sao Paulo, Brazil).

Publication Title

Pre- and postnatal exposure of mice to concentrated urban PM<sub>2.5</sub> decreases the number of alveoli and leads to altered lung function at an early stage of life.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69719
Brain transcriptomic response to social eavesdropping in zebrafish
  • organism-icon Danio rerio
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Genechip Zebrafish ST Genome Array 1.1 (zebgene11st)

Description

Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish in relation to the attention they have paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role.

Publication Title

Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio).

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE18502
Drosophila melanogaster spermatogenesis expression profile: mitotic, meiotic and post-meiotic cells
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We conducted a genome-wide expression analysis of wild-type males using three cell populations isolated from mitotic, meiotic and post-meiotic phases of spermatogenesis in Drosophila melanogaster. Our approach was to directly isolate testis regions enriched with RNAs from each of the three specific germline phases.

Publication Title

Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56549
Perception of fight outcome is needed to activate socially driven changes in brain transcriptome
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Group living animals must be able to express different behavior profiles depending on their social status. This implies that the same genotype may translate into different behavioral phenotypes through socially driven differential gene expression. Here we show for the first time that what triggers the switch between status-specific neurogenomic states is not the objective structure of the social interaction but rather the subjects perception of its outcome. For this purpose we had male zebrafish fight either a real opponent or their own image on a mirror. Massive changes in the brain transcriptome were observed in real opponent fighters, which experience either a victory or a defeat. In contrast, mirror fighters, which had no information on fight outcome despite expressing aggressive behavior, failed to activate a neurogenomic response. These results indicate that, even in cognitively simple organisms such as zebrafish, neurogenomic responses underlying changes in social status rely on cognitive appraisal.

Publication Title

Assessment of fight outcome is needed to activate socially driven transcriptional changes in the zebrafish brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP017378
Transcriptome-profiling (RNA-seq) and Ribosome-profiling (Ribo-seq) in proliferation, quiescence, senescence and transformed states.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

We applied in parallel RNA-Seq and Ribosome-profiling analyses to immortalized human primary BJ fibroblast cells under the following conditions: normal proliferation, quiescence (induced by serum depletion), senescence (induced by activation of the oncogenic RASG12V gene, and examined at early (5 days; pre-senescent state) and late (14 days; fully senescent state) time points), and neoplastic transformation (induced by RASG12V in the background of stable p53 and p16INK4A knockdowns and SV40 small-T expression. Overall design: RNA-seq, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed. Ribosome profiling, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed.

Publication Title

p53 induces transcriptional and translational programs to suppress cell proliferation and growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP020544
Transcriptome-profiling (RNA-seq) and Ribosome-profiling (Ribo-seq) of BJ cells treated with Nutlin-3a, an MDM2 inhibitor, which induces p53.
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

We applied in parallel RNA-Seq and Ribosome-profiling analyses to immortalized human primary BJ fibroblast cells in which p53 was induced by Nutlin-3a Overall design: RNA-seq, using Illumina HiSeq 2000, was applied to BJ cells treated with Nutlin-3a, at 5 timepoints: 0, 2, 4, 6, 19 hrs Ribosome profiling was applied to BJ cells treated with Nutlin-3a, at 5 timepoints: 0, 2, 4, 6, 19 hrs

Publication Title

p53 induces transcriptional and translational programs to suppress cell proliferation and growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13520
Expression profiles of (40,XX) and (39,XO) females
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

Gobal expression analysis in four somatic tissues (brain, liver, kidney and muscle) of adult 40,XX and 39,XO mice with the aim of identifying which genes are expressed from both X chromosomes as well as those genes deregulated in X chromosome monosomy.

Publication Title

Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP109190
Sex differences in peripheral not central immune responses to pain-inducing injury
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Women suffer chronic pain more frequently than men. It is not clear whether this is due to differences in higher level cognitive processes or basic nociceptive responses. This study used a mouse model to dissociate these factors and found no differences in peripheral afferent neurons or in the spinal cord immune response to neuropathic injury. However, it did identify potential sexual dimorphisms in peripheral adaptive immune responses. Overall design: RNA-seq of naïve FACS-purified DRG neurons and MACS-purified DRG neurons after partial sciatic nerve ligation (day 8): comparison of male versus female samples

Publication Title

Sex differences in peripheral not central immune responses to pain-inducing injury.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE15295
Mercury toxicity in barley roots
  • organism-icon Hordeum vulgare
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

The effects of mercury (HgCl2) on barley (Hordeum vulgare L.) growth, physiological traits and gene expression profiles were studied. The shoot to root ratio was decreased in the two levels of HgCl2 (500 and 1000 M) assayed, which was related primarily with decreases in shoot dry weight. Moreover stomatal conductance was limited and leaf carbon isotope discrimination decreased. Therefore water uptake limitations seem to be an important component of barley responses to HgCl2. Evidences for decreased stomatal conductance and water uptake limitations were further confirmed by the over expression of ABA related transcripts and down regulation of an aquaporin in roots. Root dry weight was only affected at 1000 M HgCl2 and root browning was observed, while several transcripts for lignin biosynthesis were up regulated in HgCl2. Microarray analysis further revealed that growth inhibition in HgCl2 was related to increased expression of genes participating in ethylene biosynthesis and down regulation of several genes participating in DNA synthesis, chromatin structure and cell division, cell wall degradation and modification, oxidative pentose phosphate cycle and nitrogen metabolism pathway. Genes involved in detoxification and defence mechanisms were up regulated including several cytochrome P450s, glucosyltransferases and glutathione-s-transferases and amino acid metabolism participatory genes. It is concluded that barley plants survive in the presence of HgCl2 through several mechanisms that include water uptake limitations, shoot and root growth regulation, increased expression of genes involved in the biosynthesis of several plant protection secondary metabolites and finally through detoxification.

Publication Title

Molecular and physiological mechanisms associated with root exposure to mercury in barley.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP094724
Crispr-Cas9-mediated Aire gene editing in medullary thymic epithelial (mTEC) cells shows its role as a gene expression modulator during thymocyte adhesion
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The aim of this study is to evaluate the effect of Autoimmune regulator (Aire) gene disruption in a murine medullary thymic epithelial cells (mTEC 3.10 cell line) on the transcriptome of these cells during its adhesion with thymocytes. The mTEC-thymocyte adhesion is a crucial step for the negative selection of autoreactive thymocytes and prevention of autoimmune diseases. To generate Aire mutant cell clones, a total of 5x10^5 mTEC 3.10 cells were electro-transfected (Lonza Nucleofector) with CRISPR-Cas9 plasmid targeting the Aire Exon 3 (plasmid "all in one" encoding Aire Exon 3 gRNA + Cas9 + GFP, from Sigma-Aldrich). The GFP positive mTEC single cells were sorted by using a FACS Aria III cytometer and cells were cloned by expansion in culture. Sanger sequencing of PCR products from the Aire Exon 3 of these clones was used in order to evaluate the occurrence of indel mutations within the targeted Exon 3. The mTEC 3.10 clone E6 was identified and validated as a compound heterozygous Aire KO (Aire +/-). This clone features the Aire allele 1 that encodes a mutant Aire protein carring a neutral aminoacid substitution (A118P) and allele 2 encoding a truncated Aire protein. Wild type (WT) mTEC 3.10 cells or mTEC 3.10 clone E6 were cultured in the presence (or not) of thymocytes in order to establish cell adhesion. The total RNA preparations from WT or clone E6 mTEC cells (before or after mTEC- thymocyte co-cultures) were then sequenced through RNA-sequencing using a Illumina HiSeq 2500 instrument and the TruSeq Stranded mRNA Library Preparation kit resulting in about 50 million paired-end stranded specific 100 bp reads per sample. Sequencing reads were mapped to Mus musculus reference genome (mm10) using STAR v.2.5.0a. Read counts over transcripts were calculated using HTSeq v.0.6.1p2 based on a current UCSC annotation file for GRCm38/mm10 (Dec. 2011). Overall design: The mRNA profiles of mTEC 3.10 cells carring WT Aire (before or after co-culture with thymocytes) or heterozygous KO mTEC 3.10 cells (clone E6, Aire +/-) (before or after co-culture with thymocytes) were generated by sequencing, in duplicates, using a Illumina HiSeq 2500 instrument.

Publication Title

Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact