refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 197 results
Sort by

Filters

Technology

Platform

accession-icon GSE73907
Expression data from the aortas of ApoE knockout and ApoE/IL-17 double knockout mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. The issue of whether interleukin-17A (IL-17) contributes to hyperlipidemia-induced aortic endothelial cell activation remained unknown. Here, we reported that IL-17 contributes to hyperlipidemia-induced modulation of vascular cell gene expression during early atherosclerosis in vivo. Our results has shed lights onto the role of IL-17 on EC biology and has provided important insights for future development of novel therapeutics for early intervention of cardiovascular diseases and other inflammatory diseases.

Publication Title

Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 Mitogen-activated Protein Kinase (MAPK) Pathway.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36222
ACTL6a Enforces the Epidermal Progenitor State by Suppressing SWI/SNF-Dependent Induction of KLF4
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Somatic progenitors suppress differentiation to maintain tissue self-renewal. While epigenetic regulators of DNA and histone modifications can support such repression, a role for nuclear actin-like proteins is unclear. In epidermis, ACTL6a/BAF53A was found enriched in progenitors and down-regulated during differentiation. Conditional ACTL6a deletion abolished epidermal self-renewal and induced terminal differentiation, whereas ectopically expressed ACTL6a suppressed differentiation. Among known activators of epidermal differentiation, KLF4 was found to control 227 genes also regulated by ACTL6a. ACTL6a loss upregulated KLF4 and its target genes, effects that were blocked by KLF4 depletion. Among multiple ACTL6a-interacting epigenetic regulators, the SWI/SNF complex was required for KLF4 activation and differentiation. In progenitors, ACTL6a loss led to enhanced SWI/SNF binding to the promoters of KLF4 and other differentiation genes. ACTL6a thus maintains the undifferentiated progenitor state, in part by suppressing SWI/SNF complex-enabled induction of KLF4.

Publication Title

ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108076
Expression data of human epidermal tissue with knockdown of the SMRT-2 lncRNA
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of this study was to identify lncRNAs and novel transcripts that are differentially regulated in cutaneous squamous cell carcinoma (SCC) using RNA sequencing

Publication Title

Cancer-Associated Long Noncoding RNA SMRT-2 Controls Epidermal Differentiation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE33495
Disrupted transcripitonal network in Np63 AEC tissue model [gene expression]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The transcriptional basis for disrupted epidermal differentiation arising from TP63 AEC mutations remains to be elucidated. Here we present an organotypic model of AEC dysfunction that phenocopies differentiation defects observed in AEC patient skin. Transcriptional analysis of model AEC tissue revealed impaired induction of differentiation regulators, including OVOL1, GRHL3, KLF4, PRDM1 and ZNF750. Genome wide binding analyses of TP63 during epidermal differentiation showed direct binding of OVOL1, GRHL3, and ZNF750 promoters suggesting AEC mutants prevent normal activation of these targets by direct transcriptional interference. Remarkably, exogenous ZNF750 restores impaired epidermal differentiation caused by AEC mutation. Thus, repression of ZNF750 is central to disrupted epidermal differentiation in model AEC tissue.

Publication Title

Genomic profiling of a human organotypic model of AEC syndrome reveals ZNF750 as an essential downstream target of mutant TP63.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58161
Suppression of progenitor differentiation requires the long noncoding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE34767
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34528
Suppression of Progenitor Differentiation Requires the Long Non-Coding RNA ANCR [HG-U133_Plus_2]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Long non-coding RNAs (lncRNAs) regulate diverse processes, yet a potential role for lncRNAs in maintaining the undifferentiated state in somatic tissue progenitor cells remains uncharacterized. We used transcriptome sequencing and tiling arrays to compare lncRNA expression in epidermal progenitor populations versus differentiating cells. We identified ANCR (anti differentiation ncRNA) as an 855 bp lncRNA down-regulated during differentiation. Depleting ANCR in progenitor-containing populations, without any other stimuli, led to rapid differentiation gene induction. In epidermis, ANCR loss abolished the normal exclusion of differentiation from the progenitor-containing compartment. The ANCR lncRNA is thus required to enforce the undifferentiated cell state within epidermis.

Publication Title

Suppression of progenitor differentiation requires the long noncoding RNA ANCR.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56994
The Scc2NIPBL/Scc4MAU2 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions.
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42460
Budding yeast Wapl controls sister chromatid cohesion maintenance and the chromosome condensation status
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56991
The Scc2NIPBL/Scc4MAU2 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions [microarray]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The Scc2/Scc4 complex binds to broad nucleosome-free regions in the promoters of highly expressed genes. The cohesin loader is recruited to these sites by the RSC chromatin remodeling complex

Publication Title

The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact