refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 153 results
Sort by

Filters

Technology

Platform

accession-icon GSE61732
Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.

Publication Title

Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE52403
Dose- and time- dependent ionizing ratidation effect on mice peripheral blood
  • organism-icon Mus musculus
  • sample-icon 536 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Gene expression profiles of peripheral blood samples from C57BL/6 mice exposed with ionizing radiation.

Publication Title

Biological pathway selection through Bayesian integrative modeling.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE8289
HEK293 cells overexpressing HNF4a2 wild type or mutant forms C106R or R154X
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes regulated by the transcription factor HNF4a2

Publication Title

HNF4alpha reduces proliferation of kidney cells and affects genes deregulated in renal cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29406
The genomic analysis of the interaction between the lactic acidosis and hypoxia response
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Lactic acidosis and hypoxia are two prominent tumor microenvironmental stresses that are both known to exert important influences on gene expression and phenotypes of cancer cells. But very little is known about the cross-talk and interaction between these two stresses. We performed gene expression analysis of MCF7 cells exposed to lactic acidosis, hypoxia and combined lactic acidosis and hypoxia. We found the hypoxia response elicited under hypoxia was mostly abolished upon simultaneous exposure to lactic acidosis. The repression effects are due to loss of HIF-1 protein synthesis under lactic acidosis. In addition, we showed lactic acidosis strongly synergizes with hypoxia to activate the unfold protein response (UPR) and inflammation response which are highly similar to amino acid deprivation responses (AAR). The statistical factor analysis of hypoxia and lactic acidosis responses indicated that ATF4 locus, an important activator in the UPR/AAR pathway, is amplified in subsets of breast tumors and cancer cell lines. Varying ATF4 levels dramatically affect the ability to survive the post-stress recovery from hypoxia and lactic acidosis and may suggest its selection of ATF4 amplification in human cancers. These data suggest that lactic acidosis interacts with hypoxia by both inhibiting the canonical hypoxia response and while activating the UPR and inflammation response. Gain of ATF4 locus may offer survival advantages to allow successful adaptation to frequent fluctuations of oxygen and acidity in tumor microenvironment. Collectively, our studies have provided linkage between the short-term transcriptional responses to the long term selection of the DNA copy number alterations (CNAs) under tumor microenvironmental stresses.

Publication Title

Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16381
Cytoprotective Nrf2 pathway is induced in chronically Txnrd1-deficient hepatocytes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins.

Publication Title

Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP150412
The interferon-induced exonuclease, ISG20, exerts antiviral activity through upregulation of type I interferon response proteins
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Type I interferon-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20 kDa ISG, ISG20, is a nuclear 3''-5''exonuclease with preference for single stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20-/- mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20-/- mice compared to wild-type viruses, but not in ISG20 ectopic-expressing cells. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expressionof other ISGs that inhibit translation and possibly other activities in the replication cycle. Overall design: Two clones each of tet-inducible MEFs overexpressing eGFP (control), Isg20, and Isg20(D94G) were induced by tetracycline removal for 72 hours. rRNA was depleted with RiboMinus Eukaryote kit (Life Technologies) and prepared for Illumina directional 100bp paired-end HiSeq2000 reads.

Publication Title

The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE9649
Expression studies of HMEC exposed to lactic acidosis and hypoxia
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human Mammalian Epithelial Cells (HMEC) were exposed to different environmental stresses, including hypoxia, lactic acidosis, the combination of hypoxia and lactic acidosis, lactosis , as well as acidosis.

Publication Title

The genomic analysis of lactic acidosis and acidosis response in human cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE97477
Calcium-mediated shaping of naive CD4 T cell phenotype and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced regulatory T cells. To decipher the molecular mechanisms governing this process, microarray data comparing highly (Ly-6C-) and lowly (Ly-6C+) Self-reactive naive CD4 T cells were obtained.

Publication Title

Calcium-mediated shaping of naive CD4 T-cell phenotype and function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41931
Expression profiling of early lymphoid progenitors deficient for Ebf1 and Foxo1
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Foxo1 and Ebf1 deficiency leads to a similar disruption of normal B-cell development at the level of the common lymphoid progenitor (CLP). Both mouse strains display the existance of LY6D+ CLPs but a marked/complete lack of proB cells.

Publication Title

Positive intergenic feedback circuitry, involving EBF1 and FOXO1, orchestrates B-cell fate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049409
PER2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Implantation is dependent on synchronized interactions between the conceptus and surrounding decidual cells but the involvement of clock genes in this process is not well understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK and BMAL1 and repressors encoded by PER and CRY genes. Here we show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Downregulation was preceded by reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter and occurred between 12 - 24 h after exposure to a deciduogenic stimulus. RNA sequencing revealed that premature inhibition of PER2 by siRNA knockdown leads to a grossly disorganised decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators amongst the 1,121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of mid-luteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure. Thus, PER2 synchronizes mitotic expansion of HESCs with a periodic decidual gene expression; uncoupling of these events may cause persistent pregnancy failure. Overall design: Endometrial mRNA profiles of paired control (siRNA-NT) and siRNA-PER2 were generated by deep sequencing, in triplicate using Illumina

Publication Title

The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact