refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 153 results
Sort by

Filters

Technology

Platform

accession-icon GSE9116
Differential gene expression in primary ovarian tumors from depressed and non-depressed patients
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profiling was carried out on primary ovarian carcinomas from 10 patients. The primary research question is whether gene expression differs in tissues from individuals with high vs low symptoms of psychological depression.

Publication Title

Depression, social support, and beta-adrenergic transcription control in human ovarian cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60716
Cell-Independent MicroRNA Biogenesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE133513
Sputum and blood transcriptomics characterization of the PDE4 inhibitor CHF6001 in COPD
  • organism-icon Homo sapiens
  • sample-icon 426 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of the present study was to characterize the gene expression profile of the phosphodiesterase-4 inhibitor CHF6001 on top of inhaled triple therapy in sputum cells and whole blood of chronic bronchitis patients. Samples for analyses were collected from a multicenter, three-period, three-way, placebo-controlled, double-blind, complete block crossover study. Eligible patients underwent three, 32-day treatment periods during which they received CHF6001 800 or 1600 µg twice daily (total daily doses of 1600 or 3200 µg) or matching placebo, all via multi-dose dry-powder inhaler (NEXThaler). Treatment periods were separated by a 28–42 day washout. Eligible patients were male or female, ≥40 years of age, current or ex-smokers with a smoking history ≥10 pack-years, a diagnosis of COPD, post-bronchodilator forced expiratory volume in 1 second (FEV1) ≥30% and <70% predicted, ratio of FEV1 to forced vital capacity (FVC) <0.70, COPD Assessment Test score ≥10, and a history of chronic bronchitis (defined as chronic cough and sputum production for more than three months per year for at least two years) and treated with inhaled triple ICS/LABA/LAMA therapy for at least two months prior to enrollment. CHF6001 had no effect in blood, but a strong effect in sputum with 1471 and 2598 significantly differentially-expressed probe-sets relative to placebo (p-value adjusted for False Discovery Rate<0.05) for 800 and 1600µg , respectively. Functional enrichment analysis showed significant modulation of key inflammatory pathways involved in cytokine activity, pathogen-associated-pattern-recognition activity, oxidative stress and vitamin D with associated inhibition of downstream inflammatory effectors. A large number of pro-inflammatory genes coding for cytokines and matrix-metalloproteinases were significantly differentially expressed for both doses; the majority (>87%) were downregulated, including macrophage inflammatory protein-1-alpha and 1-beta, interleukin-27-beta, interleukin-12-beta, interleukin-32, tumor necrosis factor-alpha-induced-protein-8, ligand-superfamily-member-15, and matrix-metalloproteinases-7,12 and 14. In conclusion inhaled PDE4-Inhibition by CHF6001 on top of triple therapy in patients with chronic bronchitis patients significantly modulated key inflammatory targets and pathways in the lung but not in blood. Mechanistically these findings support a targeted effect in the lung while minimizing unwanted systemic class-effects

Publication Title

Sputum and blood transcriptomics characterisation of the inhaled PDE4 inhibitor CHF6001 on top of triple therapy in patients with chronic bronchitis.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE22597
Expression data from Fine Needle Aspiration (FNA) biopsies from breast cancer patients
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This is a stage-matched case control study. Cases with clinical diagnosis of Inflammatory Breast Cancer (IBC) were selected after reviewing all medical records of the 440 FNA samples. IBC was defined as signs of erythema and edema (peau dorange) involving at least one third of the skin and rapid clinical presentation. Presence of tumor emboli in the dermal lymphatics of the involved skin in the pathology report was not required for inclusion as IBC. Controls were selected to match for T stage, all T4a-c tumors in the data set were included as controls. IBC breast cancer are all T4d breast cancer.

Publication Title

Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon SRP060636
Analysis of MOF under stress conditions
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We analyzed the role of MOF in primary MEFs and differentiated podocytes in response to Adriamycin. Mof was deleted in MEFs using the Cre-ERT2 trasgene, while Mof was knockdown in podocytes using shRNA infection. Samples were treated with Adriamycin for 24 hours and gene expression changes analysed. Overall design: Analysis of gene expression changes upon Mof depletion in two cell lines, MEFs and podocytes, with and without Adriamycin

Publication Title

MOF maintains transcriptional programs regulating cellular stress response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29396
Remote ischemic preconditioning in on-pump coronary artery bypass graft surgery
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this placebo-controlled randomized controlled trial, we tested whether remote ischemic preconditioning (RIPC) elicited by four 5-minute cycles of 300 mmHg of cuff inflation/deflation of the lower limb would reduce myocardial necrosis in isoflurane-anesthetized patients undergoing on-pump coronary artery bypass graft surgery. Secondary outcomes were the perioperative release of the biomarkers NTproBNP, hsCRP, S100, atrial transcriptional profiles, and short- and long-term clinical outcomes. RIPC with concomitantly applied isoflurane did not affect the release of biomarkers or clinical outcome. NTproBNP release correlated with isoflurane- but not RIPC-induced transcriptional changes.

Publication Title

Remote ischemic preconditioning applied during isoflurane inhalation provides no benefit to the myocardium of patients undergoing on-pump coronary artery bypass graft surgery: lack of synergy or evidence of antagonism in cardioprotection?

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP179098
Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: the goal of this project is to study the effects of the PFOS (perfluorooctanesulfonate) in the transcriptome profiling (RNA-seq) of exposed zebrafish larvae. Methods: Total RNA was isolated from the samples using AllPrep DNA/RNA Mini Kit (Qiagen, CA, USA) as described by the manufacturer. Three high quality sample per condition were chosen to the mRNA enrichment using KAPA Stranded mRNA-Seq Kit Illumina® Platforms (Kapa Biosystems). Transcriptomic profiles were generated by deep sequencing using Illumina TruSeq SBS Kit v3-HS (pair-ended; 2x76bp) on a HiSeq2000 sequencing system. Image analysis, base calling and quality scoring of the run were processed using the manufacturer's software Real Time Analysis (RTA 1.13.48) and followed by generation of FASTQ sequence files by CASAVA. Statistical analysis: RNA-seq reads were aligned to the D. rerio reference genome (GRCz10) using STAR version 2.5.1b . Genes annotated in GRCz10.84 were quantified using RSEM version 1.2.28 with default parameters. Differential expression analysis between all PFOS conditions was performed with the DESeq2 (v.1.10.1) R package with the Likelihood ratio test option. ANOVA-PLS was performed on the normalized data using the lmdme package in R (v. 1.0.136, R Core Team). Results: We generated on average 39 million paired-end reads for each sample and identified aproximatelly 24500 transcripts. 1434 differentially expressed genes (DEGs) were detected which could be divided in 2 clusters including 767 and 667 genes, respectively. Affected metabolic pathways were analyzed from the DEGs: lipid transport and metabolism, protein ubiquination, antigen processing, immune system, apoptosis, trans-membrane, cell matrix, Zn-ion binding, cytokines and JAK-STAT signaling pathways', among others, were down or upregulated. Conclusions: Our results suggest a complex, multiple endocrine disruption-like toxic effects at a concentrations well bellow the 1 mg/L, considered as the LOAEC/NOAEC for many of the macroscopic effects traditionally linked to PFOS toxicity in zebrafish embryos. While our results confirm the known effect of PFOS in lipid metabolism, we found a clear decrease on expression of many genes related to natural immunity and defense against infections. We propose that this transcriptional pattern may be a marker for the immunotoxic effects of PFOS and other related substances in fish and other vertebrates, including humans. We concluded that our analysis allowed us the identification of underlying molecular mechanisms occurring simultaneously at the exposed animals. While this approach is very useful to analyze the effects of compounds, like PFOS, able to interact with different cellular targets, we believe that it can be also applied to the characterization of the different toxic components present in complex natural mixtures. Overall design: Whole embryo (5 dpf; wild type zebrafish) mRNA profiles of 4 groups (control, 0.03, 0.3 and 1 ppm of PFOS) were generated by deep sequencing, in triplicate, using Illumina TruSeq SBS Kit v3-HS (pair-ended) on a HiSeq2000 sequencing system.

Publication Title

Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos.

Sample Metadata Fields

Age, Subject

View Samples
accession-icon GSE12260
Expression data from isolated perfused rat hearts exposed to doxorubicin
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We used microarrays to detail transcriptional changes in the rat heart in response to doxorubicin, a chemotherapeutic drug known to induce cardiac disfunction/heart failure

Publication Title

Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47122
Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To investigate the time-dependent and coordinated sequence of inflammation-related events, and the dynamic features of macrophage polarisation/activation, we build and validated an in vitro model based on primary human monocytes

Publication Title

Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34800
A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The identification of subtype-specific translocations has revolutionized diagnostics of sarcoma and provided new insight into oncogenesis. We used RNA-Seq to investigate samples diagnosed as small round cell tumors of bone, possibly Ewing sarcoma, but lacking the canonical EWSR1-ETS translocation. A new fusion was observed between the BCL6 co-repressor (BCOR) and the testis specific cyclin B3 (CCNB3) genes on chromosome X. RNA-Seq results were confirmed by RT-PCR and cloning the tumor-specific genomic translocation breakpoints. 24 BCOR-CCNB3-positive tumors were identified among a series of 594 sarcomas. Gene profiling experiments indicate that BCOR-CCNB3-positive cases are biologically distinct from other sarcomas, particularly Ewings sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this group of sarcoma and that over-expression of BCOR-CCNB3 or of a truncated CCNB3 activates S-phase in NIH3T3 cells. Thus the intrachromosomal X fusion described here represents a new subtype of bone sarcoma caused by a novel gene fusion mechanism.

Publication Title

A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact