refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 153 results
Sort by

Filters

Technology

Platform

accession-icon GSE56752
Human Cytomegalovirus in Glioblastoma Stemness--Results from Human, Mouse and HCMV DNA arrays
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36337
Cytomegalovirus promotes maintenance and growth of glioblastoma stem cells [Mouse gene expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We introduced the HCMV IE1 gene into a mouse model of spontaneous glioma driven by p53KD and overexpression of Ras and PDGF and compared the transcriptomes of mouse gliomas +/- IE1. The following plasmids were utilized for glioma induction in equal parts: pT2/C-Luc/PGK-SB100, pT2/Cag-NrasV12, pT2/shP53/GFP4/mPDGF, and pT2/Cag-IE1 or pT2/C-Neo.

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56715
Cytomegalovirus promotes maintenance and growth of glioblastoma stem cells [Human gene expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Primary human GBM stem like cells were infected with HCMV TR strain (MOI=1) and treated with IE siRNA (a combination of oligos targeting IE1 and IE2 HCMV genes)

Publication Title

Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP163419
Transcriptomic Profile of OCI-AML-20 Cell Line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Acute myeloid leukemia (AML) is a complex, heterogeneous disease with variable outcomes following curative intent chemotherapy. AML with inv(3) is a genetic subgroup characterized by low response rate to induction type chemotherapy and hence is among the worst long term survivorship of the AMLs. Here, we present RNA-Seq transcriptome data from OCI-AML-20, a new AML cell line with inv(3) and deletion of chromosome 7. Overall design: RNA-Seq transcriptome analysis of OCI-AML-20 cell line with three biological replicates.

Publication Title

Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression.

Sample Metadata Fields

Disease, Cell line, Subject

View Samples
accession-icon GSE54065
SYK Is a Critical Regulator of FLT3 In Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myeloproliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML and resistance to FLT3-ITD-targeted therapy.

Publication Title

SYK is a critical regulator of FLT3 in acute myeloid leukemia.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE94359
Gene expression profiling of CD45+ leukocytes infiltrating the prostate of TRAMP and TRAMP-J18-/- (iNKT cell-deficient) mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.

Publication Title

Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20713
Epigenetic portraits of human breast cancers
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DNA methylation profiling reveals a predominant immune component in breast cancers.

Sample Metadata Fields

Specimen part, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE20711
Epigenetic portraits of human breast cancers (expression data)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimising treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but information is scant on the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease. Here we used the Infinium Methylation Platform to profile at single-CpG resolution (over 14,000 genes interrogated) the methylomes of 119 breast tumours. It emerges that many genes whose expression is linked to the ER status are epigenetically controlled (or/ we show that the two major phenotypes of breast cancers determined by ER status are widely involving epigenetic regulatory mechanisms), offering the prospect of a novel approach to treating ER-positive tumours. We have distinguished methylation-profile-based tumour clusters, some coinciding with known expression subtypes but also new entities that may provide a meaningful basis for refining breast tumour typology. We show that methylation patterns may reflect the cellular origins of tumours. Having highlighted an unexpectedly strong epigenetic component in the regulation of key immune pathways, we show that a set of immune genes have high prognostic value in specific tumour categories. By laying the ground for better understanding of breast cancer heterogeneity and improved tumour taxonomy, the precise epigenetic portraits drawn here should contribute to better management of breast cancer patients.

Publication Title

DNA methylation profiling reveals a predominant immune component in breast cancers.

Sample Metadata Fields

Disease stage

View Samples
accession-icon GSE22250
Epigenetic portraits of human breast cancers (various cell lines expression data)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimising treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but information is scant on the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease. Here we used the Infinium Methylation Platform to profile at single-CpG resolution (over 14,000 genes interrogated) the methylomes of 119 breast tumours. It emerges that many genes whose expression is linked to the ER status are epigenetically controlled (or/ we show that the two major phenotypes of breast cancers determined by ER status are widely involving epigenetic regulatory mechanisms), offering the prospect of a novel approach to treating ER-positive tumours. We have distinguished methylation-profile-based tumour clusters, some coinciding with known expression subtypes but also new entities that may provide a meaningful basis for refining breast tumour typology. We show that methylation patterns may reflect the cellular origins of tumours. Having highlighted an unexpectedly strong epigenetic component in the regulation of key immune pathways, we show that a set of immune genes have high prognostic value in specific tumour categories. By laying the ground for better understanding of breast cancer heterogeneity and improved tumour taxonomy, the precise epigenetic portraits drawn here should contribute to better management of breast cancer patients.

Publication Title

DNA methylation profiling reveals a predominant immune component in breast cancers.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP132408
Direct control of SPEECHLESS by PIF4 in the high temperature response of stomatal development
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Environmental factors shape the phenotypes of multicellular organisms. The production of stomata—the epidermal pores required for gas exchange in plants—is highly plastic, and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the bHLH transcription factor that serves as the master regulator of stomatal lineage initiation [6,7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high temperature signaling [8]. Importantly, we demonstrate that upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where the high temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at high temperature. Our work identifies a molecular link connecting high temperature signaling and stomatal development, and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly-expressed environmental signaling factor. Overall design: Gene expression profiles following 12 hr Dex-induction of control and ML1p:SPCH1-4A-expressing Arabidopsis plants grown in liquid culture. Four replicates per line at 0 and 12 hr.

Publication Title

Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.

Sample Metadata Fields

Age, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact