refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon SRP072227
Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase, and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 null mice (Pkm2-/-). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2-/- mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. Overall design: RNA was isolated from flash frozen ground whole liver tissue of 35 week old PKM2 KO and WT mice. Three independent mice from each condition were used as biological replicates.

Publication Title

Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6451
A genomic screen for activators of the antioxidant response element
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The antioxidant response element (ARE) is a cis-acting regulatory enhancer element found in the 5 flanking region of many phase II detoxification enzymes. Upregulation of ARE-dependent target genes is known to have neuroprotective effects; yet, the mechanism of activation is largely unknown. By screening an arrayed collection of approximately 15,000 full-length expression cDNAs in the human neuroblastoma cell line IMR-32 with an ARE-luciferase reporter, we have identified several cDNAs not previously associated with ARE activation. A subset of cDNAs, including sequestosome 1 (SQSTM1) and dipeptidylpeptidase III (DPP3), activated the ARE in primary mouse-derived cortical neurons. Overexpression of SQSTM1 and DPP3 in IMR-32 cells stimulated NRF2 nuclear translocation and led to increased levels of NAD(P)H:quinone oxidoreductase 1 (NQO1), a protein which is transcriptionally regulated by the ARE. When transfected into IMR-32 neuroblastoma cells that were depleted of transcription factor NRF2 by RNA interference, SQSTM1 and DPP3 were unable to activate the ARE or induce NQO1 expression, indicating that the ARE activation upon ectopic expression of these cDNAs is mediated by NRF2. Studies with pharmacological inhibitors indicated that 1-phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) signaling are also essential for activity. Lastly, overexpression of these cDNAs conferred partial resistance to hydrogen peroxide induced toxicity, consistent with the induction of antioxidant and phase II detoxification enzymes which can protect from oxidative stress. This work and other such studies may provide mechanisms for activating the ARE in the absence of general oxidative stress, and a novel therapeutic approach to degenerative diseases and aging.

Publication Title

A genomic screen for activators of the antioxidant response element.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22999
Lyngbyoic Acid, a "Tagged" Fatty Acid from a Marine Cyanobacterium, Disrupts Quorum Sensing in Pseudomonas aeruginosa
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Quorum sensing (QS) is a mechanism of bacterial gene regulation in response to increases in population density. Production of small molecule QS signals, their accumulation within a diffusion-limited environment and their binding to the LuxR-type receptor trigger QS-controlled gene regulatory cascades. QS pathways mediated by acylhomoserine lactones (AHLs) in Gram-negative bacteria are the best studied. In Pseudomonas aeruginosa, for example, binding of AHLs to their cognate receptors (LasR, RhlR) controls production of virulence factors, pigments, antibiotics and other behaviors important for its interactions with eukaryotic hosts and other bacteria. We isolated a new small cyclopropane-containing fatty acid, lyngbyoic acid (1), as a major metabolite of the marine cyanobacterium, Lyngbya sp., collected off Fort Pierce, Florida. The structure of 1 was determined by NMR, MS and optical rotation. We screened 1 against four reporters based on AHL receptors from Vibrio fischeri (LuxR), Aeromonas hydrophila (AhyR), Agrobacterium tumefaciens (TraR) and P. aeruginosa (LasR) and found that 1 most strongly affected LasR. We show, by using a defined set of reporters, that compound 1 acts both through the AHL-binding site of LasR and independent of it. We also show that 1 reduces pyocyanin and LasB, both on the protein and transcript level, in wild-type P. aeruginosa, and that 1 directly inhibits LasB enzymatic activity. Conversely, dodecanoic acid (11) increased pyocanin and LasB, demonstrating that 1 is a tagged fatty acid potentially resistant to -oxidation.

Publication Title

Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41600
Attenuation of Global Transcript Changes Induced by Elastase with Symplostatin 5 Cotreatment
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray profiling using the Affymetrix GeneChip Human Genome U133 plus 2.0 arrays was performed to comprehensively determine global changes in transcript levels in bronchial epithelial cells following elastase treatment. Elastase caused a significant change in expression (P < 0.05, fold change 1.5) of 364 transcripts corresponding to 348 genes. Elastase affected the expression of signaling molecules including chemokines, cytokines, and receptors, as well as components of the spliceosome, transcription machinery, cell cycle and ubiquitin-mediated proteolysis.

Publication Title

Potent elastase inhibitors from cyanobacteria: structural basis and mechanisms mediating cytoprotective and anti-inflammatory effects in bronchial epithelial cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE22061
Gene expression profiles of HCT116 colorectal carcinoma cells treated with HDAC inhibitors
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Histone deacetylases (HDACs) regulate gene expression. Inhibition of class I HDACs has been shown to inhibit cancer cell growth. Largazole, a new potent HDAC inhibitor, shows strong antitumor activity, presumably by modulating transcription of cancer relevant genes.

Publication Title

Anticolon cancer activity of largazole, a marine-derived tunable histone deacetylase inhibitor.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE2742
Genomic Strategies Identify the Antitumor Agent Apratoxin A as a Potent Antagonist of FGF Signaling and STAT3 Activation
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Total RNA was extracted from apratoxin A or vehicle treated HT29 cells using the RNeasy Mini Kit (Qiagen). Probe values from CEL files were condensed to probe sets using Rosetta Resolver software. Resolver ANOVA analysis was then performed between groups.

Publication Title

A functional genomics approach to the mode of action of apratoxin A.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE102100
Global Transcript Changes In Human Keratinocyte Cells Induced by Apratyramide, a Marine-Derived Peptidic Stimulator of VEGF-A and Other Growth Factors
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

To elucidate the mode of action of apratyramide, we performed microarray profiling using the Affymetrix GeneChip Human Transcriptome Array 2.0 to determine global changes in transcript levels in HaCaT cells treated with apratyramide. Comparativel analysis identified 371 differentially expressed genes after 12 h treatment with 30 M apratyramide (p < 0.05, FDR corrected, fold change >1.5 or <0.67). Consistent with our previous data, VEGF-A appeared to be one of the most up-regulated genes. To examine the molecular functions and genetic networks, the microarray data was analyzed using Ingenuity Pathways Aanalysis (IPA).The global changes of transcript levels are associated with increased downstream phenotypic effects including angiogenesis, mitogenesis, differentiation of epithelial tissue and formation of skin, and decreased effects such as apoptosis of liver cells and hypoplasia of organs. IPA analysis of 371 microarray hits indicated the unfolded protein response (UPR) as the top canonical pathway with a p-value of 1.45 10-16. The IPA also elucidated that the 371 hits were most related to a molecular network associated with the function of cellular compromise and cellular maintenance. The network contains molecular components from UPR pathway, NRF2-mediated oxidative stress response signaling as well as glucocorticoid receptor signaling.

Publication Title

Apratyramide, a Marine-Derived Peptidic Stimulator of VEGF-A and Other Growth Factors with Potential Application in Wound Healing.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE18397
Expression profiling of NB4 cells after treatment with ATRA
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA)

Publication Title

Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38580
KAP1 regulates gene networks controlling T cell development and activation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34447
Gene expression analysis of wild type and KAP1 KO mouse T cell progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The modulation of chromatin status at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by KAP1, the universal cofactor of KRAB-containing Zinc Finger Proteins (KRAB-ZFPs), a tetrapod-restricted family of transcriptional repressors. T cell-specific Kap1 knockout mice displayed a significant expansion of immature thymocytes and imbalances in the ratios of mature T cells in the thymus and the spleen, with impaired responses to TCR stimulation. Transcriptome and chromatin studies revealed that KAP1 directly controls the expression of a number of genes involved in TCR and cytokine signalling, among which Traf1 and FoxO1, and is strongly associated with cis-acting regulatory elements marked by the H3K9me3 repressive mark on the genome of thymic T cells. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB/ZFPs are selectively expressed in T lymphoid cells. These results reveal the so far unsuspected yet important role of KRAB/KAP1-mediated epigenetic regulation in T lymphocyte differentiation and activation.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact