refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 151 results
Sort by

Filters

Technology

Platform

accession-icon SRP045421
Comparison of total and cytoplasmic mRNA reveals global regulation by nuclear retention and miRNAs
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We extracted RNA from whole cells and RNA from the cytoplasm and performed RNA sequening to compare differences in gene expression level and investigate what is the most appropriate estimate of the amount of mRNA present in a given cell population. The study was based on three human cell lines. Overall design: Analyze of transcriptome in 3 human cell lines (U-2 OS, A-431, U-251MG). Each cell line was prepared with four biological replicates for total RNA and four for cytoplasmic RNA.

Publication Title

Comparison of total and cytoplasmic mRNA reveals global regulation by nuclear retention and miRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43478
HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Heterochromatin protein 1a (HP1a) is a chromatin associated protein that has been well studied in many model organisms, such as Drosophila, where it is a determining factor for classical heterochromatin. HP1a is associated with the two histone methyltransferases SETDB1 and Su(var)3-9, which mediate H3K9 methylation marks and participate in the establishment and spreading of HP1a enriched chromatin. While HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4 specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggested that HP1a has a repressing function on chromosome 4, where it preferentially targets non-ubiquitously expressed genes (NUEGs), and a stimulating function in pericentromeric regions. Further, we showed that the effects of SETDB1 and Su(var)3-9 are similar to HP1a, and on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In contrast, transposons are repressed by HP1a and Su(var)3-9 but are un-affected by SETDB1 and POF. In addition, we found that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.

Publication Title

HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34400
Buffering and proteolysis are induced upon segmental haploidy in Drosophila melanogaster.
  • organism-icon Drosophila melanogaster
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Aneuploidy, i.e., variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segment (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined, is the leading cause of miscarriages and mental retardations and a hallmark of cancer. Despite their documented importance in disease the effects of aneuploidies on the transcriptome remains largely unknown. Here we have examined the expression output in seven deficiency heterozygotes as single deficiencies and in all pairwise combinations. The results show that genes in one copy are buffered, i.e., are expressed above the expected 50% expression level compared to wild type and the buffering is general and not influenced by additional haploid regions. Long genes are significantly better buffered than short genes and our analysis suggests that gene length is the primary determinant for the degree of buffering. For short genes the degree of buffering depends on expression level and expression pattern. Furthermore, the results show that in deficiency heterozygotes the expression of genes involved in proteolysis is enhanced and negatively correlates with the degree of buffering. Our results suggest that proteolysis is a general response induced by aneuploidy.

Publication Title

Buffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE74194
Muscle Transcriptome Profile of Resistance Exercise is Augmented by Aerobic Exercise
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

10 male subjects performed ~45 min one-legged cycling and 4 x 7 maximal concentric-eccentric knee extensions for each leg 15 min later. Thus, one limb performed aerobic and resistance exercise (AE+RE), while the opposing leg did resistance exercise only (RE). Biopsies were obtained from m. vastus lateralis of each leg 3 h after the resistance exercise bout.

Publication Title

Aerobic exercise augments muscle transcriptome profile of resistance exercise.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon GSE36903
Gene regulation by the lysine demethylase KDM4A in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Lysine methylation of histones is associated with both transcriptionally active chromatin and with silent chromatin, depending on what residue is modified. Histone methyltransferases and demethylases ensure that histone methylations are dynamic and can vary depending on cell cycle- or developmental stage. KDM4A demethylates H3K36me3, a modification enriched in the 3end of active genes. The genomic targets and the role of KDM4 proteins in development remain largely unknown.

Publication Title

Gene regulation by the lysine demethylase KDM4A in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE112770
Human bone marrow-derived myeloid dendritic cells show an immature transcriptional and functional profile compared to their peripheral blood counterparts and separate from Slan+ non-classical monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ and CD141+ myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for CD1c+ and CD141+ was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady-state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.

Publication Title

Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98694
Transcriptional profiling reveals functional dichotomy between human slan+ non-classical monocytes and myeloid dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Abstract: Human 6-sulfo LacNac (slan)+ cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DC. To gain deeper insight into the functional specialization of slan+ cells, we have compared them with both conventional myeloid DC subsets (CD1c+ and CD141+) in human peripheral blood. Using genome-wide transcriptional profiling as well as extensive functional tests, we clearly show that slan+ cells form a distinct, non-DC-like, population. They cluster away from both DC subsets and their gene expression profile evidently suggests involvement in distinct inflammatory processes. An extensive comparison with existing genomic data sets also strongly confirmed the relationship of slan+ with the monocytic compartment rather than with DC. From a functional perspective, their ability to induce CD4+ and CD8+ T cell proliferation is relatively low. Combined with the finding that antigen presentation by MHC class II is at the top of under-represented pathways in slan+ cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression of complement receptors on their cell surface, together with their high secretion of IL-1 and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies.

Publication Title

Transcriptional profiling reveals functional dichotomy between human slan<sup>+</sup> non-classical monocytes and myeloid dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP019968
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA sequencing data for four cell lines representing different stages during malignant transformation.

Publication Title

Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57440
Expression analysis of neurospheres generated in vitro
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neurospheres generated in vitro were treated with non-epinephrine or potassium chloride. Gene expression analysis was then carried out to identify genes that are up or down regulated due to chemical treatement.

Publication Title

A comparative study of techniques for differential expression analysis on RNA-Seq data.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP131149
Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In tumor tissues, hypoxia is a commonly observed feature resulting from rapidly proliferating cancer cells outgrowing the surrounding vasculature network. The four-step isogenic BJ cell model enables studies of defined steps of tumorigenesis: the normal, immortalized, transformed, and metastasizing stages. By transcriptome profiling under atmospheric and moderate hypoxic (3% O2) conditions, we observed that despite being highly similar, the four cell lines responded strikingly different to hypoxia. We demonstrate that the transcriptome adaptation to moderate hypoxia resembles the process of malignant transformation. The transformed cells displayed a distinct capability of metabolic switching, reflected in reversed gene expression patterns for several genes involved in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic tumors. This study demonstrates the usefulness of the BJ cell model for highlighting the interconnection of pathways involved in malignant transformation and hypoxic response. Overall design: 16 paired-end samples in total: 4 different cell lines sequenced in duplicate across 2 conditions each.

Publication Title

Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact