refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 115 results
Sort by

Filters

Technology

Platform

accession-icon SRP095347
Genetic influences on gene expression in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 192 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In this study, we describe the impact of genetic variation on transcript abundance in an F2 population of Arabidopsis thaliana. The RNA-seq resource generated by this study is suitable for expression quantitative trait locus (eQTL) mapping. From the aligned RNA-seq reads, and available genomic data for each of the parents of the cross, we imputed the genomes of each F2 individual (to allow genetic mapping of RNA abundance traits; briefly, genetic differences in aligned RNA-seq reads were used to impute each F2 genome). Our results show that heritable differences on gene expression can be detected using F2 populations (that is, single F2 plants), and shed light on the control of expression differences among strains of this reference plant. Overall design: 183 samples consisting of single F2 plants of a cross between Arabidopsis thaliana accessions 8230 and 6195 were generated. For each sample, RNA was collected from the aerial shoot at the 9th true leaf stage, and Illumina mRNA-seq libraries were constructed. Using these libraries, 50 bp single end RNA-seq Illumina reads were generated for each sample, and used to quantify gene expresison in each individual. The resulting expression phenotypes are suitable for genetic mapping of the control of gene expression differences in the species.

Publication Title

Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP075643
Transcriptome of RA-responsive and RA-resistant breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Several breast cancer cells respond to the antiproliferative effects of RA, but others are RA-resistant. In several cases resistance has been correlated to the amplification of the erb-b2 receptor tyrosine kinase 2 (ERBB2) gene, but the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here we compared two human breast cancer cell lines, the MCF7 cell line, which responds to the antiproliferative action of RA and the BT474 cell line, which is RA-resistant subsequent to ERBB2 amplification in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated after RA addition. The paradigm of these proteins is the RA receptor a (RARa), which was phosphorylated in MCF7 cells but not in BT474 cells. The panel of the RA-regulated genes was also different. Overall our results indicate that ERBB2 amplification interferes with the ability of RA to activate kinases with consequences on the phosphorylation of several proteins involved in transcription and thus on gene expression. Overall design: Two human breast cancer cell lines were compared for their repertoire of genes regulated by retinoic acid (RA): the RA sensitive MCF7 cell line and the RA resistant B7474 cell line

Publication Title

Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE95309
Gene expression analyses in otefin mutant Drosophila ovaries
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

LEM Domain proteins are key components of the nuclear lamina. Mutations in LEM-D proteins cause dystrophic diseases associated with compromised adult stem cells, yet it remains unclear how LEM-D proteins support stem cell function. Studies described here use the homologue of the LEM-D protein emerin in Drosophila, Otefin (Ote) as a model to understand LEM-D protein function in adult stem cells. Loss of Ote causes female sterility due to a complex germline stem cell (GSC) phenotype that includes both an early block in germline differentiation followed by GSC death. In vivo cell cycle analysis revealed that ote mutant GSCs display a lengthened S phase.We find that loss of the DNA Damage Response (DDR) Chk2 is able to not only rescue the lengthened S phase, but also GSC death and the block in germline differentiation. Activation of detrimental checkpoint in absence of Ote is conserved in both male and female GSCs and surprisingly occurs independent of detectable canonical DDR triggers, including transposon de-repression and DNA damage. Two defects were found to occur upstream of Chk2 activation: nuclear lamina morphological defects and altered heterochromatin organization. Together, our data identify the primary cause for a compromised adult stem cell population in the absence of a LEM-D protein.

Publication Title

Nuclear lamina dysfunction triggers a germline stem cell checkpoint.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40586
Peripheral blood RNA gene expression profiling in patients with bacterial meningitis
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of present study was to describe the genetic pathways activated during the community acquired bacterial meningitis (BM) by using genome-wide RNA expression profiling combined with functional annotation of transcriptional changes. We included 21 patients with BM hospitalized in 2008. The control group consisted of 18 healthy subjects. The RNA was extracted from whole blood, globin mRNA was depleted and gene expression profiling was performed with GeneChip Human Gene 1.0 ST Arrays enabling the analysis of 28,869 genes. Gene expression profile data were analyzed using Bioconductor packages and Bayesian modeling. Functional annotation of the enriched gene sets was used to define changed genetic networks. We also analyzed if the gene expression profile depends on the clinical course and outcome. In order to verify the genechip results, we chose ten functionally relevant genes with high statistical significance (CD177, IL1R2, IL18R1, IL18RAP, OLFM4, TLR5, CPA3, FCER1A, IL5RA, IL7R) and performed quantitative real-time (qRT) PCR.We identified the significant differences at p values of <0.05 in 8569 genes and after False Discovery Rate (FDR) correction, total of 5500 genes remained significant at p value of <0.01. Quantitative RT-PCR confirmed differential expression for selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation of humoral and cellular immune responses (enrichment score 43). Those changes were found in adults and in children with BM compared to the healthy controls. Gene expression profile didnt depend on the clinical outcome, but there was very strong influence by the type of the pathogen. This study demonstrates a strong functional genomic evidence of the over-active immune response during bacterial meningitis. This hyperactive response possibly explains the complicated clinical course of this disease.

Publication Title

Peripheral blood RNA gene expression profiling in patients with bacterial meningitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE137915
YAP and/or TAZ inhibition in HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The Hippo pathway effectors yes-associated protein (YAP) and WW domain containing transcription regulator 1 (TAZ/WWTR1) support tumor initiation and progression in various cancer entities including hepatocellular carcinoma (HCC). However, to which extent YAP and TAZ contribute to liver tumorigenesis via common and exclusive molecular mechanisms is poorly understood. RNAinterference (RNAi) experiments illustrate that YAP and TAZ individually support HCC cell viability and migration, while for invasion additive effects were observed. Comprehensive expression profiling revealed partly overlapping YAP/TAZ target genes as well as exclusively regulated genes.

Publication Title

TAZ target gene ITGAV regulates invasion and feeds back positively on YAP and TAZ in liver cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26828
Global gene expression analysis of six cadmium-transformed UROtsa cell isolates
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The immortalized human urothelial cell line, UROtsa, was transformed in six parallel cultures with continual passaging in1 M Cd+2 until the cells were able to attain the ability to form colonies in soft agar and subcutaneous tumors in nude mice. The gene expression profiles between cadmium-transformed and control samples were compared and the differentially expressed genes were identified.

Publication Title

Variation of keratin 7 expression and other phenotypic characteristics of independent isolates of cadmium transformed human urothelial cells (UROtsa).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5348
Specific changes of liver transcriptome in the early stages of copper accumulation in the mouse model of wilson disease
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Wilson disease (WD) is a severe metabolic disorder caused by genetic inactivation of copper-transporting ATPase ATP7B. In WD, copper accumulates in several tissues, particularly in the liver, inducing marked time-dependent pathological changes. To identify initial events in the copper-dependent development of liver pathology we utilized the Atp7b-/- mice, an animal model for WD. Analysis of mRNA from livers of control and Atp7b-/- 6 weeks-old mice using oligonucleotide arrays revealed specific changes of the transcriptome at this stage of copper accumulation. Few messages (29 up-regulated and 46 down-regulated) change their abundance more than 2-fold pointing to the specific effect of copper on gene expression/mRNA stability. The gene ontology analysis revealed copper effects on distinct metabolic pathways.

Publication Title

High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28231
Dendritic cell maturation by proinflammatory TNF or pathogenic Trypanosoma brucei antigens instruct similar T helper-2 cell responses in murine models of autoimmunity and asthma
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP014142
Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Illumina Genome Analyzer II

Description

To comprehensively characterize microRNA (miRNA) expression in breast cancer, we performed the first extensive next-generation sequencing expression analysis of this disease. We sequenced small RNA from tumors with paired samples of normal and tumor-adjacent breast tissue. Our results indicate that tumor identity is achieved mainly by variation in the expression levels of a common set of miRNAs rather than by tissue-specific expression. We also report 361 new, well-supported miRNA precursors. Nearly two-thirds of these new genes were detected in other human tissues and 49% of the miRNAs were found associated with Ago2 in MCF7 cells. Ten percent of the new miRNAs are located in regions with high-level genomic amplifications in breast cancer. A new miRNA is encoded within the ERBB2/Her2 gene and amplification of this gene leads to overexpression of the new miRNA, indicating that this potent oncogene and important clinical marker may have two different biological functions. In summary, our work substantially expands the number of known miRNAs and highlights the complexity of small RNA expression in breast cancer. Overall design: Sequencing of approximately 18-35 nt small RNAs from paired samples of normal, tumor and tumor-adjacent tissue for five breast cancer patients

Publication Title

Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE60528
Mouse GM-CSF-related alveolar macrophage genome-wide expression data
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

GM-CSF receptor- deficient (Csf2rb/ or KO) mice develop a lung disease identical to hereditary pulmonary alveolar proteinosis (hPAP) in humans with recessive CSF2RA or CSF2RB mutations that impair GM-CSF receptor function. We performed pulmonary macrophage transplantation (PMT) of bone marrow derived macrophages (BMDMs) without myeloablation in Csf2rb/mice. BMDMs were administered by endotracheal instillation into 2 month-old Csf2rb/ mice. Results demonstrated that PMT therapeutic of hPAP in Csf2rb/ mice was highly efficacious and durable. Alveolar macrophages were isolated by bronchoalveolar lavage one year after administration subjected to microarray analysis to determine the effects of PMT therapy on the global gene expression profile.

Publication Title

Pulmonary macrophage transplantation therapy.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact