refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 10 results
Sort by

Filters

Technology

Platform

accession-icon SRP061835
Characterization of t(15;21) translocations in myeloid disorders
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report on two novel t(15;21) alterations [t(15;21)(q24;q22) and t(15;21)(q21;q22)], which led to concurrent disruption of RUNX1 and two translocation partner genes encoding for transcription factors (SIN3A, TCF12) Overall design: Examination of four different patients with myeloid disorders. 2 out of 4 have been analyzed by means RNAseq

Publication Title

t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP026052
Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3’ UTRs
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The RNA helicase UPF1 is best known for its key function in mRNA nonsense-mediated mRNA decay (NMD), but has also been implicated in additional mRNA turnover mechanisms, telomere homeostasis, and DNA replication. In NMD, UPF1 recruitment to target mRNAs is thought to occur through interaction with release factors at terminating ribosomes, but evidence for translation-independent interaction of UPF1 with the 3’ untranslated region (UTR) of mRNAs has also been reported. To map UPF1 binding sites transcriptome-wide, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) in human cells, untreated or after inhibiting translation by puromycin. We found a strong association of UPF1 with 3’ UTRs in undisturbed, translationally active cells and a significant increase in UPF1 binding to coding sequence (CDS) after translation inhibition. These results indicate that UPF1 binds RNA before translation and gets displaced from the CDS by translating ribosomes. This evidence for translation-independent UPF1-RNA interaction, which is corroborated by RNA immunoprecipitations experiments and by our observation that UPF1 also crosslinks to long non-coding RNAs, suggests that the decision to trigger NMD occurs after association of UPF1 with the mRNA, presumably through activation of RNA-bound UPF1 by aberrant translation termination. Overall design: Examination of Upf1 binding preferences via iCLIP in untreated HeLa cells and HeLa cells, where translation is blocked by puromycin treatment in vivo crosslinking and immunoprecipitation strategy (iCLIP)

Publication Title

Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3' UTRs.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP133658
RNA sequencing of LNZ308 glioma cells treated under differential conditions including monotherapies, dual therapy and synergistic triple regimen employing ?-irradiation, temozolomide and oncolytic measles virus.
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The synergistic regimen CT-VT-RT triggers proinflammatory antiviral signalling with activation of apoptotic cascades resulting in tumor cell death. Overall design: The experiment was designed to elicit individual treatment effects using monotherapies to understand the combinatorial sequential effect of dual and triple regimen using appropriate controls.

Publication Title

Measles Virus-Based Treatments Trigger a Pro-inflammatory Cascade and a Distinctive Immunopeptidome in Glioblastoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon GSE17617
Gene profiling within the orexin-producing neurons
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). The best biological marker of narcolepsy is orexin deficiency with dramatic loss in hypothalamic orexin-producing neurons. Together with a tight HLA and T-cell receptor alpha(5) association, narcolepsy is believed to be autoimmune although all attempts to prove it have failed.To characterize orexin specific peptides we produced a transgenic mouse model to access to the orexin neurons transcription profile. We generated BAC-based transgenic mice by replacing the orexin coding sequence by a flag-tagged poly(A) binding protein (Pabp1) cDNA sequence. The basis of this construct is to take advantage of the ability of Pabp1 to bind to the poly(A) tails of mRNAs in vivo. Thus mRNAs from orexin cells are expected to be enriched by cross-linking them to the flag-tagged PABP and then co-immunoprecipitating this complex with a specific anti-flag monoclonal antibody.

Publication Title

Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients.

Sample Metadata Fields

Age

View Samples
accession-icon GSE37595
T-bet regulated genes in KG1 cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-bet is pivotal for initiation and perpetuation of Th1 immunity. Identification of novel T-bet regulated genes is crucial for further understanding the biology of this transcription factor.

Publication Title

IL-36γ/IL-1F9, an innate T-bet target in myeloid cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE25338
Prevention of acute liver failure
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Aim of this project was the evaluation of the effect of flushing (intraportal and intraoperative) hepatic allografts with tacrolimus before transplantation. Group A was administered tacrolimus, 20ng/ml in 1500ml albumin solution; and Group B was administered only albumin solution. Wedge biopsie of the allograft were harvested after 15 min flushing time and the gene expression profile were determined.

Publication Title

Effect of intraportal infusion of tacrolimus on ischaemic reperfusion injury in orthotopic liver transplantation: a randomized controlled trial.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16857
Zebrafish response to microbiota
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Vertebrates are colonized at birth by complex microbial communities (microbiota) that influence diverse aspects of host biology. We have used a functional genomics approach to identify zebrafish genes that are differentially expressed in response to the microbiota. We assessed RNA expression profiles from zebrafish larvae at 6 days post-fertilization (dpf) that were either raised continuously in the absence of any microorganism (germ-free or GF), or raised GF through 3dpf then colonized with a normal zebrafish microbiota (conventionalized or CONVD).

Publication Title

Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE32885
Loss of heat shock protein HSPA4 aggravates pressure overload-induced myocardial damage
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Failure of molecular chaperones to direct the correct folding of newly synthesized proteins leads to the accumulation of misfolded proteins in cells. HSPA4 is a member of the heat shock protein 110 family (HSP110) that acts as a nucleotide exchange factor of HSP70 chaperones. We found that the expression of HSPA4 is upregulated in murine hearts subjected to pressure overload and in failing human hearts. To investigate the cardiac function of HSPA4, Hspa4 knockout (KO) mice were generated and exhibited cardiac hypertrophy and fibrosis. Hspa4 KO hearts were characterized by a significant increase in heart weight/body weight ratio, elevated expression of hypertrophic and fibrotic gene markers, and concentric hypertrophy with preserved contractile functions. Cardiac hypertrophy in Hspa4 KO hearts was associated with enhanced activation of gp130-STAT3, CaMKII, and calcineurin-NFAT signaling. Further analyses revealed a significant increase in cross sectional area of cardiomyocytes, and in expression levels of hypertrophic markers in cultured neonatal Hspa4 KO cardiomyocytes suggesting that the hypertrophy of mutant mice was a result of primary defects in cardiomyocytes. Gene expression profile in hearts of 3.5-week-old mice revealed a differentially expressed gene sets related to ion channels and stress response. Taken together, these results reveal that HSPA4 is implicated in protection against pressure overload-induced heart failure.

Publication Title

Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE103552
Human Feto-placental Arterial and Venous Endothelial Cells are Differentially Programmed by Gestational Diabetes Mellitus Resulting in Cell-specific Barrier Function Changes
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We performed genome-wide methylation analysis of primary feto-placental arterial and venous endothelial cells from healthy (AEC and VEC) and GDM complicated pregnancies (dAEC and dVEC). Parallel transcriptome analysis identified variation in gene expression linked to GDM-associated DNA methylation, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with Cell Morphology and Cellular Movement in both AEC and VEC. Further functional analysis demonstrated that GDM exposed cells have altered actin organization and barrier function.

Publication Title

Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86882
Cardioprotection and lifespan extension by the natural polyamine spermidine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends lifespan, while it exerts cardioprotective effects through reduction of cardiac hypertrophy and preservation of diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy, mitochondrial respiration and mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine failed to promote cardioprotection in mice lacking the autophagy-related gene Atg5 in cardiomyocytes.

Publication Title

Cardioprotection and lifespan extension by the natural polyamine spermidine.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact