refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE94704
A microRNA family exerts maternal control on sex determination in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally-contributed microRNAs may therefore play important roles in early development. We have elucidated a major biological role of the nematode mir-35 family of maternally-contributed, essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream and downstream of her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. The predicted target genes that act downstream of the mir-35 family in this process, sup-26 and nhl-2, both encode RNA binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of C. elegans. Repression of nhl-2 by the mir-35 family is not only required for proper sex determination but also for viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-nave; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves navet and prevents premature deleterious developmental decisions.

Publication Title

A microRNA family exerts maternal control on sex determination in <i>C. elegans</i>.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94701
Expression data from mir-35-41(nDf50) mutant embryos grown at 20 degrees, compared to wild type
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally-contributed microRNAs may therefore play important roles in early development. We have elucidated a major biological role of the nematode mir-35 family of maternally-contributed, essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream and downstream of her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. The predicted target genes that act downstream of the mir-35 family in this process, sup-26 and nhl-2, both encode RNA binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of C. elegans. Repression of nhl-2 by the mir-35 family is not only required for proper sex determination but also for viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-nave; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves navet and prevents premature deleterious developmental decisions.

Publication Title

A microRNA family exerts maternal control on sex determination in <i>C. elegans</i>.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94702
Expression data from mir-35-41(nDf50) mutant embryos grown at 25 degrees, compared to wild type
  • organism-icon Caenorhabditis elegans
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally-contributed microRNAs may therefore play important roles in early development. We have elucidated a major biological role of the nematode mir-35 family of maternally-contributed, essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream and downstream of her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. The predicted target genes that act downstream of the mir-35 family in this process, sup-26 and nhl-2, both encode RNA binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of C. elegans. Repression of nhl-2 by the mir-35 family is not only required for proper sex determination but also for viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-nave; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves navet and prevents premature deleterious developmental decisions.

Publication Title

A microRNA family exerts maternal control on sex determination in <i>C. elegans</i>.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20097
Genome-wide RNAi screen identifies miR-19 targets in Notch-induced acute T-cell leukaemia (T-ALL)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

MicroRNAs (miRNAs) have emerged as novel cancer genes. In particular, the 17~92 cluster of miRNAs is highly expressed in haematopoietic cancers and promotes lymphomagenesis in vivo1,2. Clinical use of these findings hinges on isolating the oncogenic activity within the 17~92 cluster and defining its relevant target genes. Here we show that miR-19 is sufficient to promote leukaemogenesis in Notch1 induced T-cell lymphoblastic leukaemia (T-ALL) in vivo. Consistent with the pathogenic importance of this interaction, we report a novel translocation targeting the 17~92 miRNA cluster coinciding with a second rearrangement that activates Notch1 in T-ALL. To identify the miR-19 targets responsible for its oncogenic action, we conducted a large-scale short-hairpin RNA (shRNA) screen for genes whose knockdown could phenocopy miR-19. Strikingly, the results of this screen were enriched for miR-19 target genes, and included Bim (Bcl2L11)1,3, AMP-activated kinase (Prkaa1), and the tumour suppressor phosphatases Pten and PP2A (Ppp2r5e). Hence, an unbiased, functional genomics approach reveals a coordinate clamp down on several regulators of PI3K-related survival signals by the leukaemogenic miR-19.

Publication Title

Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE110087
Gene expression profiles of primary samples of acute myeloid leukemia (AML)
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

As part of a clinical trial of the MDM2 inhibitor DS-3032b, 41 primary tumor samples were obtained before treatment from 38 patients newly diagnosed with AML, or relapsed or refractory to standard induction chemotherapy

Publication Title

Predictive Gene Signatures Determine Tumor Sensitivity to MDM2 Inhibition.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP159156
Differential gene expression analysis in BRD4-PROTAC treated diffuse large B-cell lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We identified differential gene expression after treatment with BRD4-PROTAC ARV771 in two ABC-like diffuse large B-cella lymphoma cell lines. We have identified cluster of gene expression regulated after BRD4 inhibition which are criticaly important for DLBCL malignancy. Overall design: Two ABC-DLBCL cell lines were used to identify the changes in gene expression profile after BRD4-PROTAC (ARV771) treatment.

Publication Title

Targetable genetic alterations of <i>TCF4</i> (<i>E2-2</i>) drive immunoglobulin expression in diffuse large B cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact