refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 559 results
Sort by

Filters

Technology

Platform

accession-icon GSE6787
Expression data from wildtype and Rb-/- fetal liver at e12.5
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Rb null embryos exhibit defective fetal liver erythropoiesis. We used microarrays to compare Wt and Rb null fetal livers and to analyse gene expression differences which accompany and may underlie Rb null fetal liver degeneration, erythroid failure, and erythropoietic island dissolution.

Publication Title

Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6206
Expression data of untreated or cisplatin-treated wildtype or Rb-/- MEFs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The absence of the Rb tumor suppressor gene changes levels/activities of transcription factors (e.g., E2F and p53) which alter gene expression patterns, related to cell cycle control and cellular response to DNA damage. Cisplatin is a genotoxic chemotherapeutic agent and wildtype or Rb null cells have different sensitivities to cisplatin-induced cytotoxicity.

Publication Title

Elevated poly-(ADP-ribose)-polymerase activity sensitizes retinoblastoma-deficient cells to DNA damage-induced necrosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17049
Parasite strain-specific pathogenesis in murine infections with Trypanosoma brucei
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Different strains of T. brucei induce different degrees of pathology in infected animals, and TREU927-infected mice display greater splenomegaly and anaemia than 247-infected mice. The analysis of differential host gene expression in infected spleens has allowed the identification of which pathways or processes are crucial in determining the progression of disease, for example IL10, LXR/RXR activation and alternative macrophage activation.

Publication Title

Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE146390
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in ALCL [II]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.

Publication Title

The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE146389
The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in ALCL [I]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and B-cell development, particular members of this homeobox gene subclass constitute an NKL-code. These B-cell specific genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as model to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed pro-apoptotic factor BCL2L11/BIM supporting cell survival. Thus, EBV aberrantly activated HLX thereby disturbing both B-cell differentiation and apoptosis in DLBCL. The results of our study contribute to better understand the pathogenic role of EBV in B-cell malignancies.

Publication Title

The NKL-code for innate lymphoid cells reveals deregulated expression of NKL homeobox genes HHEX and HLX in anaplastic large cell lymphoma (ALCL).

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE128302
Deregulated expression of NKL homeobox genes in T-cell lymphomas
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Homeobox genes encode transcription factors regulating basic processes in cell differentiation during embryogenesis and in the adult. Recently, we have reported the NKL-code which describes physiological expression patterns of nine NKL homeobox genes in early hematopoiesis and in lymphopoiesis including main stages of T-, B- and NK-cell development. Aberrant activity of NKL homeobox genes is involved in the generation of hematological malignancies including T-cell leukemia. Here, we searched for deregulated NKL homeobox genes in main entities of T-cell lymphomas comprising peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), anaplastic large cell lymphoma (ALCL), adult T-cell leukemia/lymphoma (ATLL), hepatospleenic T-cell lymphoma (HSTL), and NK/T-cell lymphoma (NKTL). Our data revealed in all types altogether 19 aberrantly overexpressed genes, demonstrating that deregulated NKL homeobox genes play a significant role in T-cell lymphomas as well. For detailed analyses we focused on NKL homeobox gene MSX1 which is normally expressed in NK-cells and aberrantly activated in T-cell leukemia. This gene was overexpressed in subsets of HSTL patients and HSTL-derived sister cell lines DERL-2 and DERL-7 which served as models to identify mechanisms of deregulation. We performed genomic and expression profiling and whole genome sequencing and revealed mutated and deregulated gene candidates including the fusion gene CD53-PDGFRB exclusively expressed in DERL-2. Subsequent knockdown experiments allowed the construction of an aberrant network involved in MSX1 deregulation containing chromatin factors AUTS2 and H3B/H3.1, PDGF- and BMP-signalling pathways, and homeobox genes NKX2-2 and PITX1. The gene encoding AUTS2 is located at 7q11 and may represent a basic target of the HSTL hallmark aberration i(7q). Our data indicate both oncogenic and tumor suppressor functions of MSX1 in HSTL, reflecting its activity in early lineage differentiation of T- and NK-cells and the presence of NK-cell like characteristics in malignant HSTL cells. In this context, NKL homeobox gene MSX1 may represent a selective target in HSTL tumor evolution. Together, the data highlight an oncogenic role of deregulated NKL homeobox genes in T-cell lymphoma and identified MSX1 as a novel player in HSTL, involved in aberrant NK- and T-cell differentiation.

Publication Title

Deregulated expression of NKL homeobox genes in T-cell lymphomas.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon GSE87334
NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem cells (HSCs) and during lymphopoiesis, identifying activities of 9 particular genes. Four of these were expressed in HSCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of common target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

Publication Title

NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE87303
Expression data from human CD34-positive hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to detail the global program of gene expression underlying stemness of hematopoietic cells.

Publication Title

NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE43677
Massive Transcriptional Perturbation in Subgroups of Diffuse Large B-cell Lymphomas
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Based on the assumption that molecular mechanisms involved in cancerogenesis are characterized by groups of coordinately expressed genes, we developed and validated a novel method for analyzing transcriptional data called Correlated Gene Set Analysis (CGSA). Using 50 extracted gene sets we identified three different profiles of tumors in a cohort of 364 Diffuse large B-cell (DLBCL) and related mature aggressive B-cell lymphomas other than Burkitt lymphoma. The first profile had high level of expression of genes related to proliferation whereas the second profile exhibited a stromal and immune response phenotype. These two profiles were characterized by a large scale gene activation affecting genes which were recently shown to be epigenetically regulated, and which were enriched in oxidative phosphorylation, energy metabolism and nucleoside biosynthesis. The third and novel profile showed only low global gene activation similar to that found in normal B cells but not cell lines. Our study indicates novel levels of complexity of DLBCL with low or high large scale gene activation related to metabolism and biosynthesis and, within the group of highly activated DLBCLs, differential behavior leading to either a proliferative or a stromal and immune response phenotype.

Publication Title

Massive transcriptional perturbation in subgroups of diffuse large B-cell lymphomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP082139
Time course analysis of gene expression during hypoxia in S. cerevisiae using RNA-Seq
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We used RNA-seq to monitor mRNA levels of all genes in response to hypoxia of wild-type yeast, S. cerevisiae (strain yMH914 with wildtype HAP1). To gain insights into how gene expression changes over time, cells were subjected to 100% nitrogen gas and collected after 0,5,10,30,60,120,180, and 240 minutes. Total RNA was extracted and mRNAs were enriched by polyA selection. The cDNA was prepared into a sequencing library, multiplexed and single-end sequenced by an Illumina HiSeq 2500 sequencer. After mapping with Tophat2, the number of reads per feature was calculated using HTSeq. Overall design: RNA-seq analysis of eight time points of a yeast strain grown in hypoxia. There are three biological replicates of the time course.

Publication Title

Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact