refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 559 results
Sort by

Filters

Technology

Platform

accession-icon GSE43959
Diet-Induced Developmental Acceleration Independent of TOR and Insulin in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diet-induced developmental acceleration independent of TOR and insulin in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43954
Diet specific expression profiles_MA1
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Analysis of wildtype (N2) C. elegans fed different diets: E. coli OP50, E. coli HT115 and Comamonas DA1877

Publication Title

Diet-induced developmental acceleration independent of TOR and insulin in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43953
Diet specific expression profiles_MA2
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Analysis of wildtype (N2) C. elegans fed different diets: E. coli OP50, Comamonas DA1877, and Diluted Comamonas (1:1000 Comamonas DA1877:E. coli OP50)

Publication Title

Diet-induced developmental acceleration independent of TOR and insulin in C. elegans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43952
Integration of Metabolic and Gene Regulatory Networks Modulates The C. elegans Dietary Response
  • organism-icon Caenorhabditis elegans
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Analysis of wildtype C. elegans (N2) and pcca-1(ok2282) and metr-1(ok521) mutants fed Comamonas DA1877

Publication Title

Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45380
Pulsatile exposure to simulated reflux leads to stereotypical changes in gene expression in a 3D model of oesophageal mucosa
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Oesophageal exposure to duodenogastroesophageal refluxate is implicated in the development of Barretts Metaplasia, with increased risk of progression to oesophageal adenocarcinoma. The literature proposes that reflux exposure activates NF-kB, driving the aberrant expression of intestine-specific caudal-related homeobox genes. However, early events in the pathogenesis of Barretts Metaplasia from a normal epithelium are poorly understood. To investigate this, our study subjected a 3D model of the normal human oesophageal mucosa to repeated, pulsatile exposure to specific bile components and examined changes in gene expression. Initial 2D experiments with a range of bile salts observed that taurochenodeoxycholate (TCDC) impacted upon NF-kB activation without causing cell death. Informed by this, the 3D human oesophageal model was repeatedly exposed to TCDC in the presence and absence of acid, and the epithelial cells underwent gene expression profiling. We identified ~300 differentially expressed genes following each treatment, with a large and significant overlap between treatments. Enrichment analysis (Broad GSEA, DAVID and Metacore, GeneGo Inc) identified multiple gene sets related to cell signalling, inflammation, proliferation, differentiation and cell adhesion. Specifically NF-kB activation, Wnt signalling, cell adhesion and targets for the transcription factors PTF1A and HNF4 were highlighted. CDX1/2 transcription factors are believed to play a role in BM development; however, in this study their targets were not enriched, suggesting that CDX1/2 activation may not be the one of the initial events for BM formation. Our findings highlight new areas for investigation in the earliest stages of BM pathogenesis of oesophageal diseases and new potential therapeutic targets.

Publication Title

Pulsatile exposure to simulated reflux leads to changes in gene expression in a 3D model of oesophageal mucosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076235
RNA-Seq data for AKT, BAD, ERBB2, IGF1R, RAF1 and KRAS(G12V) overexpressed samples with twelve green fluorescent protein control samples using human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal was to capture the transcriptional activity due to over-expression of AKT, BAD, ERBB2, IGF1R, RAF1 and KRAS(G12V) genes .Overexpressions were validated using Western Blots. Illumina RNA-Seq technology was used to capture the downstream transcriptional activity. Reads were 101 base pairs long and single ended. An R open source package “Rsubread” was used to align and quantify the read using UCSC hg19 annotation. The integer-based gene counts were later normalized in TPM . Overall design: Profiles of gene expression, downstream of AKT, BAD, ERBB2, IGF1R, RAF1 and KRAS(G12V) over-expression, were generated in cells derived from breast and used to generate a gene-expression signatures.

Publication Title

Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP081074
CD133+ vs. CD133- cells in GBML8, a primary glioblastoma tumorsphere culture
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

CD133+ and CD133- cells were FACS islated from GBML8 cells to find gene signatures upregulated in cancer stem cells Overall design: After surface immuno staining, CD133+ and CD133- cells were FACS isolated and subjected to RNA isolation. Experiment represent averaged data of 2 independent FACS isolations.

Publication Title

GPR133 (ADGRD1), an adhesion G-protein-coupled receptor, is necessary for glioblastoma growth.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE12000
Obesity study in transgenic and knockout animals
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconSentrix MouseRef-8 Expression BeadChip (Target ID), Rosetta/Merck Mouse TOE 75k Array 1 microarray

Description

A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes, and identification of involved pathways and networks.

Publication Title

Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11999
Lactb male transgenic liver expression vs FVB male wildtype control
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconSentrix MouseRef-8 Expression BeadChip (Target ID)

Description

A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes, and identification of involved pathways and networks.

Publication Title

Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11996
Gas7 male transgenic liver expression vs FVB male wildtype control
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconSentrix MouseRef-8 Expression BeadChip (Target ID)

Description

A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes, and identification of involved pathways and networks.

Publication Title

Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact