refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 229 results
Sort by

Filters

Technology

Platform

accession-icon GSE52395
Expression profiling COUP-TFI Nex vs WT
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We aim to identify genes differentially expressed between mouse WT and COUP-TFI_Nex-Cre mutant cortices.

Publication Title

Postmitotic control of sensory area specification during neocortical development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43673
Expression data from D. melanogaster pupal wings
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The goal of this gene expression profiling experiment was to identify the entire set of transcription factors expressed during late pupal wing development (~80h APF) when pigmentation genes are expressed

Publication Title

Emergence and diversification of fly pigmentation through evolution of a gene regulatory module.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP054255
RNA-sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Solid cancers develop within a supportive microenvironment that promotes tumor formation and continued growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically-engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), previous studies have demonstrated that microglia are important for glioma formation and maintenance. To identify the tumor-associated microglial factors that support glioma growth (gliomagens), we employed a comprehensive large scale discovery effort using optimized advanced RNA-sequencing methods. Candidate gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative RT-PCR and RNA FISH following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, Ccl5 was identified as a highly expressed chemokine in both genetically engineered Nf1 mouse and human optic gliomas. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, Ccl5 inhibition with neutralizing antibodies reduced Nf1 mouse optic glioma growth in vivo. Collectively, these findings establish Ccl5 as critical stromal growth factor in low-grade glioma maintenance relevant to future microglia-targeted therapies for brain tumors. Overall design: Nf1 optic glioma associated microglia from mice were flow sorted. Upregulated genes of glioma associated microglia were verified and further examined.

Publication Title

RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27207
Gene Expression Analysis of native and disease-corrected motor neurons from human spinal muscular atrophy induced pluripotent stem cells free of vector and transgenic sequences
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27206
Global gene expression profiles of iPSC from SMA patient, unaffected father and iPS 19.9 compared to transcriptomic data obtained by corresponding fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPS cells) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms.

Publication Title

Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40871
Gene expression and methylation profiling in primary AML cells treated with decitabine and cytarabine
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic impact of transient low-dose decitabine treatment on primary AML cells.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE40442
Gene expression profiling in primary AML cells treated with decitabine and cytarabine
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Acute myeloid leukemia (AML), and other myeloid malignancies, are frequently treated with hypomethylating agents like decitabine. Alterations in the epigenome, induced by decitabine, are likely to result in gene expression changes. The effects of decitabine have not been systemically studied using primary AML samples.

Publication Title

Genomic impact of transient low-dose decitabine treatment on primary AML cells.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE45859
L1CAM overexpression in mouse lung endothelial cells (lECs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.

Publication Title

Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17602
Identification of regions and genes important in Szary syndrome pathogenesis using genomic and expression microarrays
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE17601
Affymetrix Gene Expression array data for Szary Syndrome (SS) samples
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This study used tumour and paired normal samples from 28 Szary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Szary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Szary Syndrome, like BUB3 and PIP5K1B.

Publication Title

Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact