refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon GSE1833
Effect of environmental enrichment in reducing seizure-induced neuronal injury. Koh-7K08NS002068-05
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Neuropsychiatric consequences of poorly controlled seizures that begin in childhood can be devastating. School failure or behavioral difficulty in a child with epilepsy is common and can become the focus of concern for families. Current antiepileptic drugs compound problems with their CNS side effects; effective therapy is currently limited as little is known about the cellular and molecular changes caused by seizures in the developing brain. This study will investigate transcriptional regulation induced by early-life seizures and explore alternative nonpharmacological therapeutic strategies in reversing damages of early-life seizures. We will study the therapeutic efficacy of environmental enrichment in reducing seizure-induced neuronal injury and in modifying gene expression alterations. We will explore molecular mechanisms underlying the beneficial effects of enriched environment and examine how different genes act in concert to influence the outcome of seizure-induced damage.

Publication Title

Environmental enrichment reverses the impaired exploratory behavior and altered gene expression induced by early-life seizures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP015943
YAP mediates crosstalk between the Hippo and PI3K-TOR pathway by suppressing PTEN via miR-29
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We aimed to identify microRNAs that are regulated by YAP in human mammary epithelial cells. Overall design: We utilized deep sequencing technology to identify microRNAs that are induced by YAP overexpression and repressed by YAP knockdown.

Publication Title

YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE1675
SHR and WKY rat adrenal glands
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

We measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.

Publication Title

Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1674
BPH and BPL mouse strain adrenal glands
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.

Publication Title

Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP090469
RNAseq analysis of Rpl13a-snoless and wild type islets
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: To gain further mechanistic insight into phenotypic differences between wild type pancreatic islets and islets with loss of function of 4 Box C/D snoRNAs from the Rpl13a locus (U32a, U33, U34 and U35a). Methods:High quality total RNA (RIN = 8.5) was prepared from hand-picked islets (n = 4 mice/genotype) using TRIZOL reagent, treated with Turbo DNAse (Thermo Fisher), and used to prepare SeqPlex RNAseq libraries (Sigma). Sequencing was performed by the Washington University Genome Technology Access Center using two lanes of Illumina HiSeq 2500, 1x50. Reads were demultiplexed and trimmed, and STAR alignment and quantification analysis was carried out using the Partek Flow platform. Uniquely aligned reads were quantified to identify genes with at least a two-fold change between genotypes with p < 0.05 and FDR step-up of 0.05. Results:We observed 2-fold or greater differences in the expression of only six genes. Conclusions: Our data indicate that loss-of-function of snoRNAs from the Rpl13a locus is associated with modest changes in mRNA abundance. Overall design: Examination of murine pancreatic islet mRNA differential expression between wild type mice and mice with loss-of-function of U32a, U33, U34, and U35a snoRNAs.

Publication Title

Rpl13a small nucleolar RNAs regulate systemic glucose metabolism.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE69088
Gene expression profiling on isogenic lines expressing wild-type and mutant forms of SMARCA2 and SMARCA4
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SMARCA2 and SMARCA4 are two mutually exclusive ATPase subunits of SWI/SNF complex. SMARCA4 deficient lung cancer population selectively depend on SMARCA2 for cancer growth phenotype. Rescue experiments with ectopic expression of wild-type, bromodomain mutant and ATPase dead SMARCA2 and SMARCA4 highlight that ATPase domain is the drug target.

Publication Title

The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18332
Gene expression from chromogranin A knockout mice vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18305
Liver gene expression from chromogranin A knockout mice (Mahapatra et al. 2005) vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The objective of the experiment is to determine the genes differentially expressed in the liver of the chromogranin A knockout mouse (Mahapatra et al., 2005).

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18304
Adrenal gland gene expression from chromogranin A knockout mice (Mahapatra et al. 2005) vs. wild-type mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The objective of the experiment is to determine the genes differentially expressed in the adrenal gland of the chromogranin A knockout mouse (Mahapatra et al., 2005).

Publication Title

Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36386
ZNF335 regulates stem cell proliferation and neuronal differentiation via Trithorax complex and REST/NRSF
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.

Sample Metadata Fields

Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact