refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 101 results
Sort by

Filters

Technology

Platform

accession-icon GSE59126
Different Preference of Degradome in Invasion versus Angiogenesis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We hypothesized altered expression of Proteases in calls capable of physiological invasion vs angiogenesis. We analyzed trophoblasts isolated from first trimester placenta that are invasive, and placental endothelial cells, that gave a high angiogenic potential. We found different expression levels of most proteases.

Publication Title

Different Preference of Degradome in Invasion versus Angiogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69086
Pigment epithelium derived factor (PEDF): a novel trophoblast derived factor limiting feto-placental angiogenesis in late pregnancy
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We hypothesized that the trophoblast secretes anti-angiogenic factors, which increase in late pregnancy to limit angiogenesis. Therefore, we determined the paracrine effect of primary human trophoblasts from early versus late pregnancy on the angiogenic potential of isolated feto-placental endothelial cells.

Publication Title

Pigment epithelium-derived factor (PEDF): a novel trophoblast-derived factor limiting feto-placental angiogenesis in late pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13624
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Here we tested a hypothesis that epileptogenesis influences expression pattern of genes in the basolateral amygdala that are critical for fear conditioning. Whole genome molecular profiling of basolateral rat amygdala was performed to compare the transcriptome changes underlying fear learning in epileptogenic and control animals. Our analysis revealed that after acquisition of fear conditioning 26 genes were regulated differently in the basolateral amygdala of both groups. Thus, our study provides the first evidence that not only the damage to the neuronal pathways but also altered composition or activity level of molecular machinery responsible for formation of emotional memories within surviving pathways can contribute to impairment in emotional learning in epileptogenic animals. Understanding the function of those genes in emotional learning provides an attractive avenue for identification of novel drug targets for treatment of emotional disorders after epileptogenesis-inducing insult.

Publication Title

Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24006
A Leukemic Stem Cell Expression Signature is Associated with Clinical Outcomes in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Context: In many cancers, specific subpopulations of cells appear to be uniquely capable of initiating and maintaining tumors. The strongest support for this cancer stem cell model comes from transplantation assays in immune-deficient mice indicating that human acute myeloid leukemia (AML) is organized as a cellular hierarchy driven by self-renewing leukemia stem cells (LSC). This model has significant implications for the development of novel therapies, but its clinical significance remains unclear.

Publication Title

Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE63270
Expression profiles of normal hematopoietic stem and progenitor cells and acute myeloid leukemia sub-populations
  • organism-icon Homo sapiens
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute Myeloid Leukemia AML is a cancer in which the process of normal cell hematopoietic differentiation is disrupted. Evidence exists that AML comprises a hierarchy with leukemic stem cells giving rise to more differentiated, but immature and functionally incompetent populations. The similarity of these AML subpopulations to normal stages of hematopoietic differentiation has not been dissected comprehensively at the transcriptional level. Here we introduce Normal Memory Analysis (NorMA), a data analysis method that extracts from omic data the remnants of the healthy normal-like phenotype. Applying NorMA to gene expression data from AML uncovered a wealth of information in the normal-like component of data: the normal hematopoietic memory of AML tumor cells. We found significant variation within the patient population, and we found strong association of this normal hematopoietic memory with survival. We found that undifferentiated NorMA phenotype has significantly worse survival than differentiated NorMA phenotype, showing that the NorMA classification of tumors captures a biologically meaningful stratification of patients, with highly significant survival association. Patients with NorMA phenotype in the undifferentiated Hematopoietic Stem Cell HSC stage had the worst survival, with median survival time under 6 months. We further found significant survival differences between tumor groups with differentiated NorMA phenotype, depending on their hematopoietic path: AML patients with NorMA phenotype in megakaryocyte-erythroid progenitor MEP stage had significantly better survival than those with NorMA phenotype in granulocyte-macrophage progenitor GMP stage. Thus NorMA produced a stratification of AML cohorts by differentiation stage, with significant outcome differences. It also provided clean molecular signatures for these stages. NorMA can be used in many other contexts, to explore for example the tumor cell of origin, or disease predisposition.

Publication Title

An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP100900
Isolation and Functional Interrogation of Adult Human Prostate Epithelial Stem Cells at Single Cell Resolution
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was confirmed using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 expression without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to separate stem and progenitor cells, RNA-seq identified unique gene signatures for the separate populations which may serve as biomarkers. Pathways enrichment in stem cells identified ribosome biogenesis and membrane estrogen-receptor signaling with NF?B signaling enriched in progenitors and these were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified cancer stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Overall design: Comparing RNA-seq gene profiles in label-retaining prostate stem cells and non-retaining progenitor cells

Publication Title

Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE43794
Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC Virus
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Viral infections of the CNS are of increasing concern, especially among immunocompromised populations. Rodent models are often inappropriate for studies of CNS infection, as many viruses, including JC Virus (JCV) and HIV, cannot replicate in rodent cells. Consequently, human fetal brain-derived multipotential CNS progenitor cells (NPCs) that can be differentiated into neurons, oligodendrocytes, or astrocytes, have served as a model for CNS studies. NPCs can be non-productively infected by JCV, while infection of progenitor-derived astrocytes (PDAs) is robust. We profiled cellular gene expression at multiple times during differentiation of NPCs to PDAs. Several activated transcription factors show commonality between cells of the brain in which JCV replicates and lymphocytes in which JCV is likely latent. Bioinformatic analysis determined transcription factors that may influence the favorable transcriptional environment for JCV in PDAs. This study attempts to provide a framework for understanding the functional transcriptional profile necessary for productive JCV infection.

Publication Title

Differentiation of human fetal multipotential neural progenitor cells to astrocytes reveals susceptibility factors for JC virus.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE55541
Human ESC-based modeling of pediatric gliomas by K27M mutation in histone H3.3 variant
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human diffuse intrinsic pontine gliomas (DIPG) are an aggressive form of pediatric brain tumors that arise in the pons in young children thus resulting in significant morbidity and very poor survival. Recent data suggest that mutations in the histone H3.3 variant are often found in these tumors, though the mechanism of their contribution to oncogenesis remains to be elucidated. Here we report that the combination of constitutive PDGFRA activation and p53 suppression as well as expression of the K27M mutant form of the histone H3.3 variant leads to neoplastic transformation of hPSC-derived neural precursors. Our study demonstrates that human ES cells represent an excellent platform for the modeling of human tumors in vitro and in vivo, which could potentially lead to the elucidation of the molecular mechanisms underlying neoplastic transformation and the identification of novel therapeutic targets.

Publication Title

Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66792
Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BCRABL1+ precursor B-cell acute lymphoblastic leukemia (BCR ABL1+ B-ALL) is an aggressive hematopoietic neoplasm characterized by a block in differentiation due in part to the somatic loss of transcription factors required for B-cell development. We hypothesized that overcoming this differentiation block by forcing cells to reprogram to the myeloid lineage would reduce the leukemogenicity of these cells. We found that primary human BCRABL1+ B-ALL cells could be induced to reprogram into macrophage-like cells by exposure to myeloid differentiation-promoting cytokines in vitro or by transient expression of the myeloid transcription factor C/EBP or PU.1. The resultant cells were clonally related to the primary leukemic blasts but resembled normal macrophages in appearance, immunophenotype, gene expression, and function. Most importantly, these macrophage-like cells were unable to establish disease in xenograft hosts, indicating that lineage reprogramming eliminates the leukemogenicity of BCRABL1+ B-ALL cells, and suggesting a previously unidentified therapeutic strategy for this disease. Finally, we determined that myeloid reprogramming may occur to some degree in human patients by identifying primary CD14+ monocytes/ macrophages in BCRABL1+ B-ALL patient samples that possess the BCRABL1+ translocation and clonally recombined VDJ regions.

Publication Title

Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10084
Effect of an AhR-/- on transcription in CD4 T cells from the spleen.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

CD4+ T cells from 8-12 week female mice were isolated from wt and AhR-/- mice 24h after injection of 10g/kg TCDD or solvent control.

Publication Title

Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice.

Sample Metadata Fields

Sex, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact