refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 121 results
Sort by

Filters

Technology

Platform

accession-icon GSE26305
Genome-wide gene expression analysis for target genes to differentiate patients with intestinal tuberculosis and Crohns disease
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This study aimed at genome-wide gene expression analysis of colonic biopsies from confirmed cases of intestinal tuberculosis (ITB) and Crohn's disease (CD) in comparison to controls. Further, to evaluate the role of T regulatory cells, Foxp3 mRNA expression was quantified in serum as well as colonic biopsies of patients with intestinal tuberculosis, Crohn's disease and controls.

Publication Title

Genome-wide gene expression analysis for target genes to differentiate patients with intestinal tuberculosis and Crohn's disease and discriminative value of FOXP3 mRNA expression.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE18430
Identification of angiotensin II-responsive genes in the kidney
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.

Publication Title

Gene expression profiles linked to AT1 angiotensin receptors in the kidney.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE32919
Patterns of histone H3 Lysine 27 monomethylation and erythroid cell-type specific gene expression
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE32135
Patterns of histone H3 Lysine 27 monomethylation and erythroid cell-type specific gene expression [expression]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

ERYTHROID CELL-TYPE SPECIFIC GENE EXPRESSION

Publication Title

Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE63798
Expression data from individual MEF2A isoform knockdown in C2C12 myotubes
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Differentiation of muscle tissue is regulated by a complex network of transcription factors. The MEF2 family of transcription factors are important players in muscle development and differentiation.

Publication Title

MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE57633
Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigatoing molecular mechanisms of drug resistance
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE57491
Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigatoing molecular mechanisms of drug resistance (expression)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Background: Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response. Results: We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearsons correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCPALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness. Conclusions: The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Publication Title

Stability of gene expression and epigenetic profiles highlights the utility of patient-derived paediatric acute lymphoblastic leukaemia xenografts for investigating molecular mechanisms of drug resistance.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP023154
Next Generation Sequencing of HM1, HP1a-/-, and HP1b-/- ESC transcriptomes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

HM1, HP1a-/-, and HP1b-/- ESC transcriptomes were generated to determine whether depletion of these HP1 proteins influences gene and/or retroelement expression Overall design: mRNA profiles of HP1a and HP1b Knockouts and its corresponding wildtype

Publication Title

Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP043339
Global Transcriptome Analysis and Enhancer Landscape of Human Primary T Follicular Helper and T Effector Lymphocytes (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

T follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) cells that migrate into germinal centers and promote B cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. Overall design: Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq.

Publication Title

Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36618
Mechanisms of terminal erythroid differentiation defect in EKLF-deficient mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

EKLF is a Krppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf -/-) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differention in Eklf -/- embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild type and Eklf -/- early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf -/- early erythroid progenitor cells, which showed a delay in the G1-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding-sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.

Publication Title

Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact