refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 496 results
Sort by

Filters

Technology

Platform

accession-icon GSE27659
BRAF Mutation Is Rare in Advanced-Stage Low-Grade Ovarian Serous Carcinomas
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed.

Publication Title

BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14001
PAX2: A Potential Biomarker for Low Malignant Potential Ovarian Tumors and Low-Grade Serous Ovarian Carcinomas
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Objective: Ovarian tumors of low-malignant potential (LMP) and low-grade serous ovarian carcinomas are thought to represent different stages on a tumorigenic continuum and to develop along pathways distinct from that of high-grade serous ovarian carcinoma. Past studies have utilized gene expression profiles to support this theory. The objective of the current study was to identify new genes whose expression profiles in LMP ovarian tumors and low-grade ovarian carcinomas differ from that in high-grade ovarian carcinomas.

Publication Title

PAX2 expression in low malignant potential ovarian tumors and low-grade ovarian serous carcinomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27651
The Anterior Gradient Homolog 3 (AGR3) Gene Is Associated with Differentiation and Survival in Ovarian Cancer
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Low-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas.

Publication Title

The anterior gradient homolog 3 (AGR3) gene is associated with differentiation and survival in ovarian cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44374
Impact of the peripancreatic adipose tissue on beta-cell adaptation to obesity: an integrated, multi-platform analysis
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44372
Gene expression profile in visceral-pancreatic adipose tissue from control rats fed a standard chow diet and obese rats fed a high-caloric cafeteria diet for 30 days.
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Changes in the secretion profile of visceral-pancreatic white adipose tissue due to diet-induced obesity are partially responsible for increased beta cell replication, suggesting that a crosstalk between pWAT and beta cells may play a role in regulating beta cell plasticity. The molecular mechanisms underlying this cross-talk are still not fully understood.

Publication Title

Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE103339
Gene expression profiling of skin melanophages and macrophages positive or negative for MHC class II expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The lack of mouse models permitting the specific ablation of tissue-resident macrophages and monocyte-derived cells complicates understanding of their contribution to tissue integrity and to immune responses. Here we use a new model permitting diphtheria-toxin (DT)-mediated depletion of those cells and in which dendritic cells are spared. We showed that the myeloid cells of the mouse ear skin dermis are dominated by a population of melanin-laden macrophages, called melanophages, that has been missed in most previous studies. By using gene expression profiling, DT-mediated ablation and parabiosis, we determined their identity including their similarity to other skin macrophages, their origin and their dynamics. Limited information exist on the identity of the skin cells responsible for long-term tattoo persistence. Benefiting of our knowledge on melanophages, we showed that they are responsible for retaining tattoo pigment particles through a dynamic process which characterization has direct implications for improving strategies aiming at removing tattoos.

Publication Title

Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP119283
Anopheles gambiae testes Transcriptome
  • organism-icon Anopheles gambiae
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq from male testes

Publication Title

Odorant receptor-mediated sperm activation in disease vector mosquitoes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49507
Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The aim of the dataset was to study on a genome-wide level the impact of Lat deficiency on gene expression in resting and activated CD4+ T cells

Publication Title

Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65309
Proliferating Langerhans cells dampen inflammation in established mouse psoriatic lesions
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Psoriasis is a chronic inflammatory skin disease of unknown etiology. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Topical application of Imiquimod, a Toll-like receptor 7 agonist, induces psoriasis in patients and psoriasiform inflammation in mice. We showed that daily application of Imiquimod for 14 days recapitulated both the initiation and the maintenance phase of psoriasis. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs and macrophages in the skin, we characterized their dynamics during both phases of psoriasis. During the initiation phase, neutrophils infiltrated the epidermis whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the maintenance phase, LCs and macrophage numbers increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by transcriptional analysis. Continuous depletion of LCs during the course of Imiquimod treatment aggravated chronic psoriatic symptoms as documented by an increased influx of neutrophils and a stronger inflammation. Therefore, by developing a mouse model that mimics the human disease more accurately, we established that LCs play a negative regulatory role during the maintenance phase of psoriasis.

Publication Title

Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE103363
Expression data from HeLa cells upon interferon-gamma or interferon-beta treatment
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immune interferon beta and gamma are essential for mammalian host defence against intracellular pathogens.

Publication Title

GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact