refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 496 results
Sort by

Filters

Technology

Platform

accession-icon GSE8065
Gene expression during early postnatal development of the small intestine
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

It was the purpose to analyse the changes in gene expression which occur in the mouse small intestine from the pre-weaning to the post-weaning stage. The gene expression was accordingly followed from postnatal day 4 to postnatal day 32.

Publication Title

Cellular cross talk in the small intestinal mucosa: postnatal lymphocytic immigration elicits a specific epithelial transcriptional response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093883
List of TIAM1 differentially expressed genes in SW620 cells [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

The T lymphoma invasion and metastasis inducing protein 1 (TIAM1) is a guanine nucleotide exchange factor (GEF) that activates the small GTPase RAC1 and regulates a plethora of functions such as cell proliferation, migration, apoptosis and polarity. Recently, we demonstrated that TIAM1 shuttles between the cytoplasm and nucleus. To determine the nuclear role of TIAM1, we performed RNA-seq on SW620 cells transfected either with a specific pre-validated siRNA for TIAM1 (siTIAM1) or a negative control siRNA (siNT) and generated a list of TIAM1 differentially expressed genes. GSEA revealed significant enrichment among TIAM1-regulated genes for YAP-associated molecular signature. To investigate the interplay of TIAM1 with YAP/TAZ we used RNA-seq, generated a list of YAP/TAZ differentially expressed genes from SW620 cells transfected either with specific siRNAs for YAP/TAZ or a negative control siRNA and compared it with the siTIAM1 RNA-seq dataset. Interestingly, we found that 50% of the TAZ/YAP regulated genes were also TIAM1 dependent. Overall design: mRNA profiles of control, TIAM1 or YAP/TAZ knockdown SW620 cells were generated from three independent experiments using RNA-seq

Publication Title

TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58142
Expression data of miR-95 transfection in MCF-7 cells compared with scramble control
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We identified miR-95 in a screen for miRNAs which functionally affect

Publication Title

A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE109170
Chemokine expression in the early response to injury in human airway epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Basal airway epithelial cells (AEC) constitute stem/progenitor cells within the central airways and respond to mucosal injury in an ordered sequence of spreading, migration, proliferation, and dif-ferentiation to needed cell types. However, dynamic gene transcription in the early events after mucosal injury has not been studied in AEC. We examined gene expression using microarrays following mechanical injury (MI) in primary human AEC grown in submersion culture to generate basal cells and in the air-liquid interface to generate differentiated AEC (dAEC) that include goblet and ciliated cells. A select group of ~150 genes was in differential expression (DE) within 2 - 24 hr after MI, and enrichment analysis of these genes showed over-representation of functional categories related to inflammatory cytokines and chemokines. Network-based gene prioritization and network reconstruction using the PINTA heat kernel diffusion algorithm demonstrated highly connected networks that were richer in differentiated AEC compared to basal cells. Similar ex-periments done in basal AEC collected from asthmatic donor lungs demonstrated substantial changes in DE genes and functional categories related to inflammation compared to basal AEC from normal donors. In dAEC, similar but more modest differences were observed. We demon-strate that the AEC transcription signature after MI identifies genes and pathways that are im-portant to the initiation and perpetuation of airway mucosal inflammation. Gene expression oc-curs quickly after injury and is more profound in differentiated AEC, and is altered in AEC from asthmatic airways. Our data suggest that the early response to injury is substantially different in asthmatic airways, particularly in basal airway epithelial cells.

Publication Title

Chemokine expression in the early response to injury in human airway epithelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40222
A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Extracellular matrix interactions play essential roles in normal physiology and many pathological processes. Here, we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Using a genetic mouse model of lung adenocarcinoma, we measured the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of adhesion profiles generated using this platform differentially segregated metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. These interactions appear to be mediated in part by 31 integrin both in vitro and in vivo. We show that these galectins also correlate with human disease at both a transcriptional and histological level. Thus, our in vitro platform allowed us to interrogate the interactions of metastatic cells with their surrounding environment, and identified ECM and integrin interactions that could lead to therapeutic targets for metastasis prevention.

Publication Title

A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46075
Dynamically regulated miRNA-mRNA networks revealed by exercise
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

MiRNAs are essential mediators of many biological processes. The aim of this study was to investigate the dynamics of miRNA-mRNA regulatory networks during exercise and subsequent recovery period.

Publication Title

Dynamically regulated miRNA-mRNA networks revealed by exercise.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE76144
Changes in transcriptome during excisional cutaneous murine wound healing
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Using microarray analysis, we explored the differences in gene expression in wounded and intact skin using murine model. Injured skin samples were examined at days 1 and 4 post injury.

Publication Title

Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE28340
Expression data from mouse dendritic cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DCs) are pivotal for both recognition of antigens and control of an array of immune responses by recognizing microbes through distinct pattern recognition receptors (PRRs). The first microbial component to be studied in detail and known to cause septic shock is endotoxin (LPS). DCs recognize LPS via Toll-like receptor TLR-47. LPS causes many changes in the DCs, but the elicitation of cytokine production is perhaps the one with clear biologic relevance.

Publication Title

Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18946
Apoptosis regulation by Kaposis sarcoma microRNAs
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Herpesviruses are known to encode micro (mi)RNAs and to use them to regulate the expression of both viral and cellular genes. The genome of Kaposis sarcoma herpesvirus (KSHV) encodes a cluster of twelve miRNAs, which are abundantly expressed during both latency and lytic infection. Relatively few cellular targets of KSHV miRNAs are known. Here, we used a microarray expression profiling approach to analyze the transcriptome of both B lymphocytes and endothelial cells stably expressing KSHV miRNAs and monitor the changes induced by the presence of these miRNAs. We generated a list of potential cellular targets by looking for miRNA seed-match-containing transcripts that were significantly down regulated upon KSHV miRNAs expression. Interestingly, the overlap of putative targets identified in B lymphocytes and endothelial cells was minimal, suggesting a tissue-specific target-regulation by viral miRNAs. Among the putative targets, we identified caspase 3, a critical factor for the control of apoptosis, which we validated using luciferase reporter assays and western blotting. In functional assays we obtained further evidence that KSHV miRNAs indeed protect cells from apoptosis.

Publication Title

Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE103339
Gene expression profiling of skin melanophages and macrophages positive or negative for MHC class II expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The lack of mouse models permitting the specific ablation of tissue-resident macrophages and monocyte-derived cells complicates understanding of their contribution to tissue integrity and to immune responses. Here we use a new model permitting diphtheria-toxin (DT)-mediated depletion of those cells and in which dendritic cells are spared. We showed that the myeloid cells of the mouse ear skin dermis are dominated by a population of melanin-laden macrophages, called melanophages, that has been missed in most previous studies. By using gene expression profiling, DT-mediated ablation and parabiosis, we determined their identity including their similarity to other skin macrophages, their origin and their dynamics. Limited information exist on the identity of the skin cells responsible for long-term tattoo persistence. Benefiting of our knowledge on melanophages, we showed that they are responsible for retaining tattoo pigment particles through a dynamic process which characterization has direct implications for improving strategies aiming at removing tattoos.

Publication Title

Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact