refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 38 results
Sort by

Filters

Technology

Platform

accession-icon GSE7568
Effects of TGF-beta on mature macrophages
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The goal of the study was to identify the effects of TGF-beta on primary human macrophages maturated under different conditions.

Publication Title

Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41842
Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Medulloblastoma is a malignant brain tumor that occurs predominantly in children. Current risk stratification based on the clinical parameters is inadequate for accurate prognostication. In order to get a better understanding of medulloblastoma biology, miRNA profiling of medulloblastomas was carried out in parallel with the expression profiling of protein- coding genes.

Publication Title

Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP133356
Maternal Plag1 deficiency delays two-cell stage embryo development and embryonic genome activation [Embryos]
  • organism-icon Mus musculus
  • sample-icon 90 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pleomorphic adenoma gene 1 (PLAG1) encodes a transcription factor involved in cancer and growth. We study the role of PLAG1 in preimplantation embryos using STRT RNA-seq of single embryos from wild type and knockout mothers (both mated with wild type studs). The lack of maternal Plag1 led to delayed mouse 2-cell stage embryo development, compensatory expression of Plag1 from the paternal allele, and dysregulation of 1,089 genes. Half of these genes displayed a pattern of delayed activation and play roles in ribosome biogenesis and protein synthesis. These mouse genes further showed a significant overlap with human EGA genes with similar ontology, and an enrichment of the PLAG1 de novo motif. We conclude that Plag1 affects EGA through retrotransposons influencing ribosomes and protein synthesis, a mechanism that might also explain its roles in cancer and growth Overall design: Single wild type and maternal Plag1 knockout embryos at MII, 2-cell and 8-cell stage development in 14-16 biologicla replicas per developmental stage and genotype.

Publication Title

Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE18811
Transcriptome Analysis and Molecular Signature of Human Retinal Pigment Epithelium
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The retinal pigment epithelium (RPE) is a polarized cell layer that is critical for photoreceptor function and survival. Its unique relationship to the photoreceptors and its specific physiology makes the RPE a critical determinant of human vision. Therefore we performed global expression profiling of native and cultured human fetal and adult RPE and determined a unique set of highly-expressed genes (called the signature set) by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues.

Publication Title

Transcriptome analysis and molecular signature of human retinal pigment epithelium.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP101581
Transcriptome of choroid endothelial cells from P5 and P30 mice.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch’s membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Methods: ECs from P5 and P30 mice were labeled in vivo by retro-orbital injection of fluorescently-labeled anti-VE-Cadherin. After 10 minutes, mice were euthanized, eyeballs were enucleated and the anterior segment was discarded. After removal of the neural retina, RPE/choroid was mechanically dissected from the sclera and digested. ECs were isolated by flow cytometry and processed immediately for RNA extraction. Results: Transcriptome analyses show that whereas P5 choroid EC transcriptome is preferentially enriched in cell cycle- and chromosome-related transcripts, reflecting an immature phenotype, the transcriptome of adult (P30) choroid ECs is enriched in genes encoding proteins involved in ‘biological adhesion’, including a variety of extracellular matrix (ECM)-related genes. Conclusion: these results strongly suggest that mature choroid ECs actively participate in extracellular matrix assembly and regulation. Overall design: Transcriptome of choroid ECs isolated from P5 and P30 mice (3 independent isolations, 7 animals per isolation) was determined using the Illumina HiSeq2000 platform. Upon quality control using FastQC, raw reads were aligned to the mouse genome (mm9) using TopHat with default parameters. CuffLinks with GC and upper quartile normalization was then used to calculate normalized expression levels.

Publication Title

Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE11703
Effect of v-erbA on RA-responsive genes in AML12 hepatocytes
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The v-erbA oncogene belongs to a superfamily of transcription factors called nuclear receptors, which includes the retinoic acid receptors (RARs) responsible for mediating the effects of retinoic acid (RA). Nuclear receptors bind to specific DNA sequences in the promoter region of target genes and v-erbA is known to exert a dominant negative effect on the activity of the RARs. The repressor activity of v-erbA has been linked to the development of hepatocellular carcinoma (HCC) in a mouse model. We have used microarray analysis to identify genes differentially expressed in hepatocytes in culture (AML12 cells) stably transfected with v-erbA and exposed to RA. We have found that v-erbA can affect expression of RA-responsive genes. We have also identified a number of v-erbA-responsive genes that are known to be involved in carcinogenesis and which may play a role in the development of HCC.

Publication Title

Modulation of expression of RA-regulated genes by the oncoprotein v-erbA.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15324
Control of CD8+ T cell proliferation by the transcription factor ELF4
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcription factors that regulate quiescence, proliferation, and homing of lymphocytes are critical for effective immune system function. In the present study, we demonstrated that the transcription factor ELF4 directly activates the tumor suppressor KLF4 downstream of T cell receptor (TCR) signaling to induce cell cycle arrest in nave CD8+ T cells. Elf4- and Klf4-deficient mice accumulated CD8+CD44hi T cells during steady-state conditions and generated more memory T cells after immunization. The homeostatic expansion of CD8+CD44hi T cells in Elf4-null mice resulted in a redistribution of cells to non-lymphoid tissue due to reduced expression of the transcription factor KLF2, and the surface proteins CCR7 and CD62L. This work describes the combinatorial role of lymphocyte-intrinsic factors in the control of T cell homeostasis, activation and homing.

Publication Title

Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Krüppel-like factors KLF4 and KLF2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32534
Expression data of FFPE peritumoral neocortex tissue
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Epilepsy is a common cause of morbidity affecting approximately one third of patients with primary brain tumors. However, the molecular mechanism underlying the tumor induced epileptogenesis is poorly understood. The alteration in peritumoral microenvironments is believed to play a significant role in inducing epileptogenesis.

Publication Title

Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP171582
Characterization of the novel spontaneously immortalized rat M端ller cell line SIRMu-1
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

M端ller cells (MCs) play a crucial role in the retina, and cultured MC lines are an important tool with which to study MC function. Transformed MC lines have been widely used; however, the transformation process can also lead to unwanted changes compared to the primary cells from which they were derived. A monoclonal spontaneously immortalized rat M端ller cell line, SIRMu-1, was derived from primary rat MCs and characterized by RNA-sequencing (in addition to immunofluorescence and western blotting) in comparison to primary MCs and the SV40-immortalized MC line, rMC-1. Overall design: RNA-seq was performed on enriched polyA RNA from primary M端ller cells (4 biological replicates of passage numbers 3-4), SIRMu-1 cells (5 biological replicates of passage numbers 6-20, two of which were cultured in the presence of the antibiotic gentamicin and the antifungal amphotericin B to match the culture conditions of the primary MCs), and rMC-1 cells (3 biological replicates of passage numbers 23-26).

Publication Title

RNA sequencing data of cultured primary rat Müller cells, the spontaneously immortalized rat Müller cell line, SIRMu-1, and the SV40-transformed rat Müller cell line, rMC-1.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15397
Smad2 and 3 transcription factors control muscle mass in adulthood
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Loss of muscle mass occurs in a variety of diseases including cancer, chronic heart failure, AIDS, diabetes and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover recent results confirm that other TGF members control muscle mass. Using genetic tools we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF and induce an atrophy program which is MuRF1 independent and requires FoxO activity. Furthermore Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mTOR signalling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation especially when they are combined with IGF1-Akt activators.

Publication Title

Smad2 and 3 transcription factors control muscle mass in adulthood.

Sample Metadata Fields

Specimen part, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact