refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 837 results
Sort by

Filters

Technology

Platform

accession-icon GSE87805
Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

The innate immune system is the organisms first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level. In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes.

Publication Title

Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE59533
Expression data from Zea mays cultivars Tietar and DKC 6575
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Maize transgenic event MON810, grown and commercialised worldwide, is the only cultivated GM event in EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic Tietar were studied in different growing conditions, to assess their behaviour in response to drought. Profiling gene expression in water deficit regimes and in generalised water stress showed an up-regulation of different stress- responsive genes. A greater number of differentially expressed genes was observed in Tietar rather than in DKC6575, with genes belonging to transcription factor families and genes encoding HSPs, LEAs and detoxification enzymes. Since these genes have been from literature, indicated as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient water stress response. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding for the delta-endotoxin insecticidal protein) in water limiting conditions. In all the experiments the CryIAb transcript was not influenced by water stress, but expressed at a constant level. This suggests that though a different pattern of sensitivity to stress, the transgenic variety maintains the same expression level for the transgene.

Publication Title

Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43017
Expression profiles of leukemia cells of acute-type adult T-cell leukemia (ATL) patients
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We recently mapped 605 chromosomal breakpoints in 61 ATL cases by spectral karyotyping and identified chromosome 14q11 as one of the most common chromosomal breakpoint regions. To map the precise location of chromosomal breakpoints at 14q11, we performed single-nucleotide polymorphism (SNP)-based comparative genomic hybridization on leukemia cells from acute-type ATL patients. The breakpoints accumulated frequently adjacent to the T cell receptor alpha/delta chain locus (TCR/) with chromosomal deletions at 14q11 and a recurrent 0.9 Mb interstitial deletion was identified at a region including part of the TCR/ locus. Because leukemia-associated genes are frequently located near the breakpoint cluster regions, we then analyzed the gene expression profiles of ATL cells and identified N-myc downstream regulated gene 2 (NDRG2) as one of the genes that are down-regulated in ATLL cells among the 25 genes mapped to the region adjacent to the recurrently deleted regions at 14q11.

Publication Title

Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85448
Proteome and secretome analysis reveals differential post-transcriptional regulation of Toll-like receptor responses
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

The innate immune system is the organisms first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level.

Publication Title

Proteome and Secretome Analysis Reveals Differential Post-transcriptional Regulation of Toll-like Receptor Responses.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8646
The Hay Wells Syndrome-Derived TAp63alphaQ540L Mutant Has Impaired Transcriptional and Cell Growth Regulatory Activity
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

p63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.

Publication Title

The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50112
Effect of Alloantibody and Complement on Endothelial Cells
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Examine the possible pro-inflammatory gene effects of alloantibody and complement on endothelial cells

Publication Title

Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-κB signaling in endothelial cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE2852
Ochratoxin A study on rat liver and kidney gene expression
  • organism-icon Rattus norvegicus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Ochratoxin A gene expression profiling in liver and kidney, with time points of exposure from 7 days to 12 motnhs

Publication Title

A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46726
In Vivo Mapping of Notch Pathway Activity in Normal and Stress Hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE98691
cIAP1 regulates the EGFR/Snai2 axis in triple negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Inhibitor of apoptosis (IAP) proteins constitute a conserved family of molecules which regulate both apoptosis and receptor signaling. They are often deregulated in cancer cells and represent potential targets for therapy. In our work, we investigated the effect of IAP inhibition in vivo to identify novel downstream genes expressed in an IAP-dependent manner that could contribute to cancer aggressiveness. To this end, immunocompromised mice engrafted subcutaneously with the triple negative breast cancer MDA-MB231 cell line were treated with SM83, a pan-IAP inhibitor developed by us, and tumor nodules were profiled for gene expression. Our work suggests that IAP-targeted therapy could contribute to EGFR inhibition and the reduction of its downstream mediators. This approach could be particularly effective in cells characterized by high levels of EGFR and Snai2, such as triple negative breast cancer.

Publication Title

cIAP1 regulates the EGFR/Snai2 axis in triple-negative breast cancer cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46723
Expression data from adult Myeloerythroid Progenitors (MP) Hes1-GFP positive and adult Myeloerythroid Progenitors (MP) Hes1-GFP negative
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).

Publication Title

In vivo mapping of notch pathway activity in normal and stress hematopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact